A Study of Three Dimensional Numerical Analysis
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Abstract

A governing equation of uncoupled three dimensional finite strain theory of consolidation
is presented. This equation is suitable for relatively thick layers, possessing large strain,
non-linear material property, and variable permeabtlity. A special numerical solution pro-
cedure has to be adopted for the finite difference scheme because the solution is not stable
in using Forward-Time Centered-Space (FTCS) method and the governing equation is
highly non-linear. The solution is capable of predicting settlement with respect to time.
The results predicted by the developed method of analysis have been compared with those
of experimental tests on different types of highly compressible soils with vertical wick
drain. The uncoupled three dimensional finite strain theory of consolidation appears to
predict settlement behavior well. A detailed comparison shows good agreement in terms of
total settlement, and reasonable agreement with respect to time.

Keywords : Vacuum consolidation, Finite strain theory, Void ratio, Wick drain, Com-

pressible soil

1. Introduction

Terzaghi's theory of one dimensional consolidation is widely used to analyze the consoli-
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dating of saturated clay. Although this theory is considered to be an accepted method of
analyzing consolidation, it is recognized as an oversimplification of the true field behavior.
Terzaghi’s theory is restricted in its applicability to a relatively thin layer with infinitesi-
mal strains and a linear stress-strain material property relationship. Infinitesimal strain
consolidation theory is based on the assumption that the deformation of the consolidating
layer is small compared to its thickness. Therefore, the deformation of the consolidating
layer can be neglected during the process of consolidation, that is, the thickness of the
layer is assumed constant throughout the consolidation process. In the infinitesimal strain
consolidation theory, it is also assumed that both the permeability and compressibility of
the soil remain constant during consolidation under a particular increment of the load.
However, for highly compressible soils, deformations are large compared with the thickness
of the layer. Clearly, errors arise from such assumptions. As a result, a number of
researchers have focused on the non-linear behavior of soil to extend the classical theory
during consolidation. In this paper, a mathematical model is developed to characterize the
finite strain consolidation which reconsiders some simplifying assumptions incorporated in
the infinitesimal strain consolidation theory. The results predicted by the developed
method of analysis are compared with those from the experimental tests on five different
types of soils. The comparisons show in general good agreement in terms of settlement
with respect to time.

2. Coordinate Systems and Transformations

In the finite strain theory of consolidation, the strain is so large that the thickness of
the compressible layer decreases while time increases. Therefore the coordinate system is

an important aspect in the finite strain theory of consolidation.

2.1 Lagrangian Coordinate System

The Lagrangian system is the initial configuration of the clay layer before consolidation
begins; it is time-independent, and refers all events to an initial t=0 configuration. A clay
layer has an initial configuration as shown in Fig. 1—a. A sample of the clay layer
(AoBoCoDo) has a coordinate pesition { and has thickness ¢{ . The bottom boundary is at
{=0 and the upper boundary is at {={,.. The distance { is the Lagrangian coordinate. With
consolidation the clay layer will have a new configuration shown in Fig. 1—b. The top sur-
face has moved and the sample has deformed to a new position (ABCD) while the bottom
surface is fixed. A new distance ¢ locates a material point as a function of time: the dis-
tance ¢ is the convective coordinate which is a function of the position in space and time.
It is therefore convenient to express the dependent variable to be calculated in terms of

the convective coordinate ¢ and time. However, this is mathematically complicated because
¢ itself is a function of coordinate { and time t. The initial coordinate system { is, how-
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ever, independent of time and ¢ along with t is an independent variable. Therefore the
mathematics of finite strain consolidation is simplified by working in the ({, t} system
which is a Lagrangian coordinate system.

Gravity

=4 $

& -

5§T §.(t)

Co D,

L } ; C D

Datum plane({=0) Datum plane{{=0)

{a) Initial configuration at t=0 (b) Configuration at time t

Fig.1 Lagrangian and convective coordinate (after Giboson, 5)

2.2 Material (Reduced) Coordinate System

The Material {Reduced) coordinate is based on the volume of the soil particles lying be-
tween the datum plane and the point being analyzed. This coordinate z is defined as

20 =[{(1-n(Z, 0)]d¢ (1)

where n = porosity of soil
As with the { coordinate the point z is independent of time. The porosity, n, may be
expressed in terms of void ratio, e, then Eqn. (1} becomes

i d{
U= T D) 2)

2.3 Coordinate Transformations

Consider a soil element with consolidation as shown in Fig. 2. In the initial state {(t=0),
the element is composed of a unit volume of solids and volume of void which is equal to
the initial void ratio e, with an initial thickness ¢{ . With consoclidation {t>>0Q), the el-
ement has consolidated to a smaller thickness ¢¢ with the same unit volume of solids (7,
=constant) while decreasing volume of voids designated by the void ratio e as explained in
Fig. 2-a. Since there is no lateral strain, the ratic of 6{ to §¢ becomes
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(a) initial state(t=0) (b) consolidating state(t>{)
Fig.2 Changes in void ratio during consolidation{after Gibson, 5)
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where e 1s a function of { and t
{=convective coordinate system
The transformation relationship between { and z coordinate can be derived by
differentiating Eqn. (2)

dz_ 1

dar — 14e(5 0) (4)
The transformation relationship between z and ¢ coordinates is given by

dz __1

dé  1+e (5)

Eqn. (3), Eqn. (4}, and Eqn. (5) are the necessary transformed relationship between the
coordinates. Gibson, England, and Hussey and Gibson, Schiffman, and Cargill contribute to
the development and application of these coordinate systems.

3. Uncoupled Three Dimensional Finite Strain Theory

Zhao described the governing equation for uncoupled three dimensional finite consoli-
dation. This theory is based on one dimensional finite strain consolidation theory of
Gibson et. al. The material coordinate was used to simplify the analytical formulation
involved,

A general three dimensional finite strain consolidation equation becomes

P ovd k(o) g o, kle) do, ge
( T 1) de ¢ 1+e ) dz + 6z "y (1+e) de @z
d k() du d k(e duy, de_
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where u = pore fluid pressure and k,(e), k,{(e), and k.(e} are the permeability coefficients
in x, y, and z directions, respectively. It was assumed that soil has isotropic permeability,
kf{e) = kle) = k.le) = k(e) {7)
This governing equation appears to be highly nonlinear. To simplify Eqn. (6), the
parameters introduced by Gibson et. al. were adopted,

- _k(e) 1 do.
gle)= . (1+e) de (8)
ife) = ~4-(-0%) (9)

The gle) and A{e) were assumed to be constants and the relationship between void ratio

and effective stress is

e=(ey—e.Jexp( —As’)} te. (10}
or
o =L In(—) (11)
A =1 =
Differentiation of Eqn. {11) vields
do’lt_—‘ 74]:__“1_ de (12)
Ae—e,

The decrease in pore fluid pressure is equal to the increase in effective stress,

du= —de’, (13)
Substitution of Eqn. (13) into Egn. (12) yields
du=-1--1—de (14)
4 e—e,
k.(e) 1

Multiplying Eqn. (14) by —— and assuming that soil has isotropic permeability,

" dx

fw
the following expression is obtained,

ke du  k(e) de
dx - “-,'.NF.(E“G,) dx (15)

Il"'

Similarly,

kie) du  k(e) de
v, 4y B pale—e,) dy (16)
Substitution of Eqn . {8}, (8), (15), and Eqn. (16) into Eqn. (6) yields
d%e

2
Fly —}',.)gi;—(;‘i‘g o

+(1+eo) d( kie) de)+(1+eﬂ) d( k{e) de)=@

i 4X (e=—e) dx’ 50y (e—e) dy dt (a7
By considering %(M) in Eqn. (17), one can have,
X (e—e]) dx
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k(e) de k(e) de + k{e) d%
== ( ) (18)
dx (e— e)dx (e—e.) dx’
By taking _(_k(gL) in Eqn. (18), one can have,
k(e) 1 dkle) __ k{e) de
dx(e ex) (e—e,) dx {e—e,)? dx (19)
Then, by the mathematical process,
( ke) dey 1  dk(e)de _k(e)  deyy k(e) d’e (20)
(e—e.) 9% (e—e,) dx dx (e—e.)? dx {e—e.) d<
Similarly,
kie) de,_ _ 1 dk(e) de _ k(e) :y kie) d’e
( )= ( ) (21)
(e—e.) dy (e—e.) dy dy (e—e.)t (e—e.) dy°
Substltutlon of Eqn. (20) and (21) into Eqn. (17) yields
dt =F{(yn— }’w)gl ae
(1+en) 1 dkde  k (deyy k de)
vh o e—e. dx dX  (e—e,)? dx e—e. dx’
(te) , 1  dk de k d’e
+ _ LS 22
y.d e—e. Oy 4y (e—e. )2( vt e—e, dy ) (22)

It should be noted that Eqn. (22) is completely uncoupled three dimensional governing
equation of the finite strain theory of consolidation along x, y, and z coordinate. Also, Egn.
(22) is suitable for relatively thick layers, possessing large strains, and variable per-
meability.

4. Numerical Analysis

The uncoupled three dimensional finite strain formulation developed in previous section
is applied to the solution of vacuum consoclidation of highly compressible soil with vertical
wick drain. In order to solve the governing equation developed in section 3 and to establish
a more efficient solution, an explicit finite difference scheme is adopted. However, the ordi-
nary explicit finite difference scheme (Forward-Time Centered-Space method) is not suit-
able for this case because the governing equation is highly nondinear and the solution is
not stable. A special finite difference scheme, Dufort-Frankel finite difference method, is
used to eliminate the problem of instability because this method is unconditionally stable.

4.1 Consolidation by Wick Drain

Typical arrangements of the round-shaped wick drains are shown in Fig. 3. However, the
area of wick drain is very small compared to the zone of influence. Therefore, the portion
of wick drain is assumed a dot (no area) in numerical analysis. Actual vacuum experiment
test had cylindrical soil height, however, in the numerical analysis, the zone of influence of
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wick drain is assumed as square shape shown in Fig. 3. Therefore, the area of round shaped
influence zone should be converted to the area of square shaped influence zone by Eqn.
(23).

g’ =%df (23-a)
® [ ] ] ] ® | |
- ]
] ® ® L L ® L] ®
/"—'"-- /,_‘\.
] L ( e 1 ® ® L \ ® L ]
%\_/@ N4
| E ! !
. e | e | e . ] ) .
- -
de de ‘
(a) Square Pattern (b) Triangular Pattern
Fig.3 - Horizontal arrangement of round shaped wick drain
X
1] o o [

z / wick drain

M -,

1 1

0 ° 0 { ho A—I'-ﬂ—‘

- - -

A—D—-d—‘
[ 0 [] 0 l‘ '
i 8 ‘

{a) Plan of Wick Drain Pattern (b} Section A-A

Fig.4 Fundamental concept of wick drain
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or
8=0.89d, (23-b)
where s = spacing of square shaped wick drain
d. = diameter of the zone of influence
The problem domain consists of the entire grid pattern shown in Fig. 4. Using the unit

cell concept, the solution domain is reduced from the problem domain to a single represen-
tative square (unit cell).

4.2 Boundary Conditions

Referring to Fig. 5, the clay layer with an initial thickness, ho, is fully consolidated and
is in equilibrium under both its own weight and a vertical effective stress ¢', acting on its
upper surface, The soil is fully saturated and water table is assumed at a distance H above
its upper surface. The upper surface of the clay layer is in contact with a pervious soil.
The wick drain is assumed to be driven to the bottom of the clay layer. Since the per-
meability was assumed isotropic in all directions and it is assumed each wick drain is
equally effective, flow to any wick drain will be bounded by the four sides of square unit
cell. Therefore, the four sides of unit cell may be assumed impervicus in the analyses. The
middle of the unit cell is the wick drain boundary. This boundary is the soil<drain
interface, and is assumed freely drained. The lower surface of the clay is in contact with
impervious layer. In this analysis, the reduced coordinate, z, is defined positive downward
from the upper surface. The upper surface serves as a moving datum and so the positive
sign must be taken in Eqn. (22). The governing equation will then become

i wick
I l -}— pervious x drain
- ‘ material / ‘
H } Te +
' 220 No flow y
across
/ outer
p / surface
ho
wick
drain / (b} Top View of Unit Cell
Y -y

{a) The Height of Unit Cell
Fig.5 View of unit cell
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de _ . _ de | de
dy ~ ek e

yU0Fe) 1 dkde  k (deyy k de,
7.4 e—e, dx dx  (e—e,)’ dx’ " e—e, dx’
yAte) 1 dkde  k (deyy k de, (24)

yi e—e, Ay dy  (e—e,)’ dy e—e, dy’

Eqn. (24) is the final form of the governing equation used to develop the computer
program. Note that Egn. (24) is completely uncoupled along the x and y (horizontal) coor-
dinate, and z (vertical) coordinate.

4.2.1 Initial Void Ratio Through the Soil Layer
Since z is the volume of solids between the datum plane and a plane through the point p
shown in Fig. 5.4, the initial vertical effective stress becomes
o' (x, v, 2)y=0 (3, — )z (25)
By substituting Eqn. (25) inte Eqn. (10} with ¢ ,=0(that is, initial effective stress at
the top surface equals zero), the void ratio varies initially through the layer according to
the equation
elx, y, z)-= (e, —e, Yexpl —ily, ~y)zite, (26)

4.2.2 void Ratios at Upper Surface
If an external vertical load Aq is applied suddenly on the soil surface, the effective stress
immediately increases by Aq at upper surface (z=0). In this circumstance, the boundary

condition of the upper surface becomes
e(x, v, 0)oi=(ep—e.)exp { —il oy TAq]ite, (27)

4.2.3 Void Ratios at Wick Drain

Since the wick drain-scil interface is assumed freely drained, the total stress at the
boundary of wick drain equals the effective stress at any time. Therefore, the boundary
condition of the wick drain becomes

elx/2, /2, 2z} ..=lelx, v, O}_,—e.} exp { —A(y,—y.)zite. (28)

4.2.4 Void Ratios at Boundaries of Four Sides of Unit Cell

As mentioned previously, the four sides of unit cell may be assumed as impervious
boundary. Referring to Fig. 5.a, the boundary conditions of four sides of unit cell require

1) side 1 {(x=x, y=0, z=2z)

de _

oy Y (29)
2) side 2 (x=x, y=s, z=2)

ge

~07=0 (30)

I
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3) side 3 (x=0, y=y, z=2)

fe _
dx =0

4) side 4 (x=s, y=y, z=2)

de _
dx

4.2.5 Vold Ratios at Bottom Surface
At the lower boundary (z=L)}, an impervious condition requires
V.=V,
where V,, = vertical velocity of the pore water

V, = vertical velocity of the solid phase

(31}

(32)

(33)

The equation of equilibrium of the water and solid mixture in the soil may be expressed

as:

da,
P —(yptey.)

Also the equation of modified Darcy’s law may be expressed as: ™V

k. du
VWZ_ ] 1 =
n( V)+k+?w(1+e) P 0

where n = porosity of soil
u = pore water pressure
Substitution of Eqn. (33) into Eqn. (35} yields

g—2= —y.(1+e)

The effective stress equation is
u=g,—a’,
where o, = total vertical stress of soil
6’ = effective vertical stress of soil

Differentiation of Eqn. (37) with respect to z yields

dy _do.  do,
dz ~— dz dz
From Eqn. (36), Eqn. (38) becomes
de, do’,
& - e
The combination of Eqn. (34) and Eqn. (39) yields
de’,
dz +(%_)’w)=0
By the chain rule
de’,  do’, de
dz = de dz
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Substitution of Eqn. (41) into Eqn. (40) vields

e _yde _
az+(}‘, 7o) da, =0 (42)
From Eqgn. (12},
, 1
de’,=——"—d 12
? Ale—e.) € (12)
one can obtain
de __ i(e—e) (43)
ds,
Substitution of Eqn. {(43) into Eqn. (42) yields
de e —a Y —
% _)(p.—p.)(e—e) =0 (44)

Eqn. (44) becomes the boundary condition of bottom surface.

4.3 Settlement - Time Relationship

The change in thickness ¢S of an element of the soil skeleton at time t is

5s=[1—%§—]5c (45)
so that the settlement S of the entire stratum along any soil column(x=x, y=y, z=z,) is
— ("1 —28&
8(x, y, )= T1-G18¢ (46)
Using Eqn. (3), (4), and Egn. (46), settlement can be expressed as
8(x, y, 2)=[ Te(x, y, 2)iv—e(x, y, 2):-]dz (47)
:[E(X, Vs Z)t;u—'e(X, ¥, Z)n:JL (48)
By the definition of material coordinate
h,
T 1+te, (49)

where e, = average initial void ratio
hy, = initial height
I. = height of soil in material coordinate

Substitution of Eqn. {49) into Eqn. {48) yields

h,

S(x, y, z).=lel(x, y, 2)o—elx, y, 2)io ] —/— (50)
1+e,
The average settlement for all the soil columns, i. e. , the settlement of the entire soil
layer is
S ( 1 Ni o Ny Nk ( ( ) ho (51)
e (b} = z iv Yis L= iv Yis =) T
) (N.N,N,) i§l El k=1[e %o Vi Zhiee €Ky ¥ 2)im] 1+,
where N; = the number of peints along x direction
N; = the number of points along y direction
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N, = the number of points along z direction
S.. = average calculated settlement of all node at time = ¢

At the end of consolidation (t— ), the maximum settlement is achieved as follows

Su(m)=de T 3 ¥ b,
W\ O )= v ¥i -0 i ¥ )i s
¢ (N;NJNk) i=1 E] EJE(X Y; z) olx V) 208 1te, (52)

where 8,. (0} = average calculated settlement of all node at time—C
Furthermore, the degree of consolidation at time t is expressed as the percentage of
settlement
S (t)

U(t)=Sa,e(—oo) (53)

4.4 Finite Difference Analysis

Finite difference scheme applied to the governing equation, boundary conditions, and the
settlement-time relationship developed previously. Explicit DuFofrt-Frankel finite differ-
ence method is used to solve non-linear partial differential equations, system of partial dif-
ferential equations, and multidimensional problems. This method is a threedevel method
which uses known values at T —AT and T to calculate unknown value at T-+AT, where 1)
T—AT = one time level before current level, 2) T=current level, and 3) T4+AT=ocne time
level after current level. Therefore, two known values, T—AT and T, are required to start
the method. However, initially the only known value is initial boundary condition value, T.
The next step, TH+AT, is unknown. In order to calculate the value at T+AT a known value
at T—AT is required. Since T is on the initial boundary of the system, T —AT is outside of
the system. Consequently, the value at T —AT (imaginary time level) was set equal to the
value at T. This, then, provides known values at T—AT and T. With the values of these
two time levels, the wvalues of third time level can be obtained by the explicit
DuFort-Frankel method.

A computer program was written to perform the necessary calculation. This computer
program can handle 14 columns along the x and y (horizontal) direction, and 30 layers
along the z {vertical) direction. The nodes are 15x15x 3] within the boundaries. However,
the boundaries of the four sides of a unit cell require a fictitious column beyond each side
of the unit cell. Therefore, the maximum finite difference grid is 17x17x3l in the com-
puter program.

5. Results

In Fig. 6 through Fig. 10, Settlement-Time curves were drawn to compare the results of
experiments on five different types of highly compressible soils with vertical wick drain‘®
with those of numerical analysis.

Soils were classified after laboratory testing in accordance with ASTM D-2487 “Classifi-
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Height of Sample{cm)

cation of Soils for Engineering Purpose”. These classification are based on laboratory
results on the actual samples tested and visual classification. The five different types of

soil were classified as follow:

Table 1. Classification of soil sample
Soil Classification Description of soil
Soil #1 MH Inorganic silts
Soil #2 MH As above
Soil #3 MH As above
Soil #4 CL Lean clay with sand
Soil £5 ClL As above

The properties of soils and vacuum consolidation testings are not included in this paper.

Those can be found in references'"'"

2,
: 28
: L3 I
27¢
- 27
261 E
)
25} PN
. experiment & I .
24 * numerical analysis B 20 - experiment
= numerical analysis
(-]
2 K 24:
22. 23 : .
107 107 10 10! 10? 10° 107t 107 10° 10' 10° 10°
Time{minutes), Log Scal Time(minutes), Log Scal
Fig6 Comparison—experimental and numerical fFig.7 Comparison —experimental and numerical
analysis for soil #1 analysis for soil #2
1} soil #1

The numerical analysis predicts 7.5% slower than experiment in terms of time to reach
ultimate settlement. The numerical analysis also estimates approximately 20% higher ulti-
mate settlement than that measured experimentally.

2} soil #2

As can be seen from Fig. 7, the time to reach ultimate settlement is closely predicted by
the numerical model. However, the numerical analysis estimates approximately 25% more
settlement than was measured experimentally.

3) soil #3

As observed in Fig. 8, the numerical analysis for this scil predicts approximately 45%

less time to reach ultimate settlement as compared to the experimental results. A possible
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E 277 "E\ L
}; i:;, 26¢
5% ZBT E. 2]
3 [ iﬁ; I . experiment
=1 25% . experiment ) 24: * numerical analysis
s numerical analysis S o3t
T o4l T 22[
23 21l _
107 10 10° 10" 10° 100 197 107t 1 10" 10° 100 10f
Time(minutes), Log Scal Time(minutes), Log Scal
Fig.8 Comparison —experimental and numerical Fig.9 Comparison—experimental and numerical
analysis for soil #3 analysis for soil #4

reason for this is that the g values of this scil varied more than those for the other soil

types in the experiment. Total settlements cbtained analytically and experimentally agree
well.

4) soil #4
As can be seen in Fig. 9, numerical analysis and the experimental results agree well. How-

ever, the analytical results predict a slightly higher time to reach ultimate settlement and
a slightly higher total settlement.

28 T
27

267

25 -
experiment

241 . numerical analysis

23F

Height of Sample(cm)

22¢

21
107 107! 10" 108 10 10° 10
Time(minutes), Log Scal

Fig.10 Comparison —experimental and numerical analysis for soil #5

5) soil #5

As can be seen in Fig. 10, the numerical analysis predicts approximately 35%; less time to

reach ultimate settlement and 20% more ultimate settlement compared to the experimen-
tally measured values.
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6. Conclusions

Based on the results of uncoupled three dimensional numerical analysis with finite strain

theory of consolidation, it can be concluded that

(1) The measured and calculated settlement are well compared with respect to time and

ultimate settlement.

(2) For all five different types of soil, numerical analysis estimates approximately 10 to

25% higher ultimate settlement than the experiment. The average ultimate settle-
ment obtained from the numerical analysis was 18.9% higher than that obtained

from the experiment.

(3) The average difference in time to reach the ultimate settlement between experiment

and numerical analysis is 50.8% because the g values, assumed as constant in numeri-
cal analysis, of soil #3 varied more than those for the other soil types in the exper-
iment. Except for soil #3, the average difference in time to reach the ultimate settle-

ment between experiment and numerical analysis is 27.6%.

(4) The large difference between experiment and numerical analysis for soil #3 is mainly

due to the values of g. When the values of g are reasonably adjusted, agreement be-

tween experiment and analytical results is excellent.
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