• 제목/요약/키워드: Double gate structure

검색결과 97건 처리시간 0.021초

Double Gate MOSFET의 전기적 특성 분석 (Analysis of Electrical Characteristics for Double Gate MOSFET)

  • 김근호;김재홍;고석웅;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.261-263
    • /
    • 2002
  • CMOS 소자들은 고속 동자 및 고집적을 위해 50nm이하로 작아지고 있다. 소자 scaling에서 중요한 것은 스케일 되지 않은 문턱 전압($V^{th}$ ), 고 전계, 기생 소스/드레인 저항과 임의의 dopant 분배에 의한 $V^{th}$ 변화율이다. 이런 일반적인 소자의 scaling down 문제들을 해결하기 위해 새로운 소자의 구조가 제안된다. 본 논문에서는 이런 문제들을 해결하기 위해 main-gate와 side-gates를 갖는 double-gate MOSFET에 대해 조사하였다.

  • PDF

나노 구조 Double Gate MOSFET의 핀치오프특성에 관한 연구 (A study on the pinch-off characteristics for Double Gate MOSFET in nano structure)

  • 고석웅;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.498-501
    • /
    • 2002
  • 본 논문에서는 main gate(MG)와 side gate(SG)를 갖는 double gate(DG) MOSFET를 디자인하고 TCAD를 이용하여 시뮬레이션하였다. MG와 SG의 길이(LMG, LSG)는 각각 50nm, 70nm로 하였으며, MG와 SG의 전압(VMG, VSG)이 각각 1.5V, 3.0V일 때 드레인전압(VD)을 0에서 1.5V까지 변화시키면서 핀치오프특성을 조사하였다. LMG가 아주 작음에도 불구하고, 핀치-오프특성이 아주 좋게 나타났다. 이것은 DG MOSFET의 VMG가 게이트를 제어하는 역할을 잘 수행하여 나노 구조에서 유용한 구조임을 알 수 있었다.

  • PDF

나노 구조 Double Gate MOSFET의 핀치오프특성에 관한 연구 (A study on the pinch-off characteristics for Double Cate MOSFET in nuo structure)

  • 고석웅;정학기
    • 한국정보통신학회논문지
    • /
    • 제6권7호
    • /
    • pp.1074-1078
    • /
    • 2002
  • 본 논문에서는 main gate(MG)와 side gate(SG)를 갖는 double gate(DG) MOSFET를 디자인하고 TCAD를 이용하여 시뮬레이션하였다. MG와 SG의 길이(LMG, LSG)는 각각 50nm, 70nm로 하였으며, MG와 SG의 전압(VMG, VSG)이 각각 1.5V, 3.0V일 때 드레인전압(VD)을 0에서 1.5V까지 변화시키면서 핀치오프특성을 조사하였다. LMG가 아주 작음에도 불구하고, 핀치-오프특성이 아주 좋게 나타났다. 이것은 DG MOSFET의 VMG가 게이트를 제어하는 역할을 잘 수행하여 나노 구조에서 유용한 구조임을 알 수 있었다.

나노 구조 Double Gate MOSFET 설계시 side gate의 최적화 (Optimization of Side Gate in the Design for Nano Structure Double Gate MOSFET)

  • 김재홍;고석웅;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.490-493
    • /
    • 2002
  • 본 논문에서는 main gate와 side gate를 갖는 double gate MOSFET의 side gate 길이와 side gate 전압에 대한 최적의 값을 조사하였다. main gate 50nm에서 각각의 side gate 길이에 대한 최적의 side gate 전압은 대략 3V이다. 또한, main gate 길이에 대한 최적의 side gate 길이는 대략 70nm이다. 이때, side gate 길이에 대한 전달 컨덕턴스 및 subthreshold slope에 대한 값들을 나타내었다. 이때 소자의 특성 분석을 위해 ISE-TCAD를 사용하여 시뮬레이션 하였다.

  • PDF

스위칭 손실을 줄인 1700 V 4H-SiC Double Trench MOSFET 구조 (A Novel 1700V 4H-SiC Double Trench MOSFET Structure for Low Switching Loss)

  • 나재엽;정항산;김광수
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.15-24
    • /
    • 2021
  • 본 논문에서는 CDT(Conventional Double Trench) MOSFET보다 스위칭 시간과 손실이 적은 1700 V EPDT(Extended P+ shielding floating gate Double Trench) MOSFET 구조를 제안하였다. 제안한 EPDT MOSFET 구조는 CDT MOSFET에서 소스 Trench의 P+ shielding 영역을 늘리고 게이트를 N+와 플로팅 P- 폴리실리콘 게이트로 나누었다. Sentaurus TCAD 시뮬레이션을 통해 두 구조를 비교한 결과 온 저항은 거의 차이가 없었으나 Crss(게이트-드레인 간 커패시턴스)는 게이트에 0 V 인가 시에는 CDT MOSFET 대비 32.54 % 줄었고 7 V 인가 시에는 65.5 % 감소하였다. 결과적으로 스위칭 시간 및 손실은 각각 45 %, 32.6 % 줄어 스위칭 특성이 크게 개선되었다.

이중게이트 구조의 Junctionless FET 의 성능 개선에 대한 연구 (Development of Gate Structure in Junctionless Double Gate Field Effect Transistors)

  • 조일환;서동선
    • 전기전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.514-519
    • /
    • 2015
  • 본 논문에서는 이중 게이트 junctionless MOSFET 의 성능 최적화를 위하여 다중 게이트 형태를 적용하여 평가한다. 금속 게이트들 사이의 일함수가 서로 다르므로 다중 게이트 구조를 적용할 경우 금속게이트 길이에 따라 소스와 드레인 주변의 전위를 조절할 수 있다. 동작 전류와 누설 전류 그리고 동작 전압은 게이트 구조에 의해 조절이 가능하며 이로 인한 동작 특성 최적화가 가능하다. 본 연구에서는 반도체 소자 시뮬레이션을 통하여 junctionless MOSFET 의 최적화를 구현하고 분석하는 연구를 수행 한다.

Double-Gate MOSFET을 이용한 공핍형 NEMFET의 특성 분석 및 최적화 (Analysis and Optimization of a Depletion-Mode NEMFET Using a Double-Gate MOSFET)

  • 김지현;정나래;김유진;신형순
    • 대한전자공학회논문지SD
    • /
    • 제46권12호
    • /
    • pp.10-17
    • /
    • 2009
  • Double-Gate MOSFET 구조를 사용한 Nano-Electro-Mechanical MOSFET (NEMFET)는 게이트 길이가 짧아지면서 나타나는 단채널 현상을 효과적으로 제어하는 새로운 구조의 차세대 소자이다. 특히 공핍형 Double-gate NEMFET (Dep-DGNEMFET)은 차단 상태에서 얇은 산화막을 가지므로 subthreshold 전류가 효과적으로 제어된다. 이러한 Dep-DGNEMFET 특성에 대한 해석적 수식을 유도하고 소자 구조가 변화하는 경우의 특성 변화를 분석하였다. 또한 ITRS (International Technology Roadmap for Semiconductors) 전류 기준값을 만족시키기 위하여 Dep-DGNEMFET 소자 구조를 최적화 하였다.

더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석 (Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure)

  • 김지원;박기찬;김용상;전재홍
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Development of Low-Vgs N-LDMOS Structure with Double Gate Oxide for Improving Rsp

  • Jeong, Woo-Yang;Yi, Keun-Man
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권6호
    • /
    • pp.193-195
    • /
    • 2009
  • This paper aims to develop a low gate source voltage ($V_{gs}$) N-LDMOS element that is fully operational at a CMOS Logic Gate voltage (3.3 or 5 V) realized using the 0.35 μm BCDMOS process. The basic structure of the N-LDMOS element presented here has a Low $V_{gs}$ LDMOS structure to which the thickness of a logic gate oxide is applied. Additional modification has been carried out in order to obtain features of an improved breakdown voltage and a specific on resistance ($R_{sp}$). A N-LDMOS element can be developed with improved features of breakdown voltage and specific on resistance, which is an important criterion for power elements by means of using a proper structure and appropriate process modification. In this paper, the structure has been made to withstand the excessive electrical field on the drain side by applying the double gate oxide structure to the channel area, to improve the specific on resistance in addition to providing a sufficient breakdown voltage margin. It is shown that the resulting modified N-LDMOS structure with the feature of the specific on resistance is improved by 31%, and so it is expected that optimized power efficiencies and the size-effectiveness can be obtained.

1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석 (The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC)

  • 유지연;김동현;이동현;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제36권4호
    • /
    • pp.385-390
    • /
    • 2023
  • In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.