• Title/Summary/Keyword: Double gate oxide

Search Result 115, Processing Time 0.026 seconds

A study on the device structure optimization of nano-scale MuGFETs (나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구)

  • Lee Chi-Woo;Yun Serena;Yu Chong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.23-30
    • /
    • 2006
  • This paper describes the short-channel effect(SCE), corner effect of nano-scale MuGFETs(Multiple-Gate FETs) by three-dimensional simulation. We can extract the equivalent gate number of MuGFETs(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4) by threshold voltage model. Using the extracted gate number(n) we can calculate the natural length for each gate devices. We established a scaling theory for MuGFETs, which gives a optimization to avoid short channel effects for the device structure(silicon thickness, gate oxide thickness). It is observed that the comer effects decrease with the reduction of doping concentration and gate oxide thickness when the radius of curvature is larger than 17 % of the channel width.

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

Channel Doping Concentration Dependent Threshold Voltage Movement of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 도핑농도에 대한 문턱전압이동)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2183-2188
    • /
    • 2014
  • This paper has analyzed threshold voltage movement for channel doping concentration of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is generally fabricated with low doping channel and fully depleted under operation. Since impurity scattering is lessened, asymmetric DGMOSFET has the adventage that high speed operation is possible. The threshold voltage movement, one of short channel effects necessarily occurred in fine devices, is investigated for the change of channel doping concentration in asymmetric DGMOSFET. The analytical potential distribution of series form is derived from Possion's equation to obtain threshold voltage. The movement of threshold voltage is investigated for channel doping concentration with parameters of channel length, channel thickness, oxide thickness, and doping profiles. As a result, threshold voltage increases with increase of doping concentration, and that decreases with decrease of channel length. Threshold voltage increases with decrease of channel thickness and bottom gate voltage. Lastly threshold voltage increases with decrease of oxide thickness.

Analytical Model for the Threshold Voltage of Long-Channel Asymmetric Double-Gate MOSFET based on Potential Linearity (전압분포의 선형특성을 이용한 Long-Channel Asymmetric Double-Gate MOSFET의 문턱전압 모델)

  • Yang, Hee-Jung;Kim, Ji-Hyun;Son, Ae-Ri;Kang, Dae-Gwan;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • A compact analytical model of the threshold voltage for long-channel Asymmetric Double-Gate(ADG) MOSFET is presented. In contrast to the previous models, channel doping and carrier quantization are taken into account. A more compact model is derived by utilizing the potential distribution linearity characteristic of silicon film at threshold. The accuracy of the model is verified by comparisons with numerical simulations for various silicon film thickness, channel doping concentration and oxide thickness.

High-Current Trench Gate DMOSFET Incorporating Current Sensing FET for Motor Driver Applications

  • Kim, Sang-Gi;Won, Jong-Il;Koo, Jin-Gun;Yang, Yil-Suk;Park, Jong-Moon;Park, Hoon-Soo;Chai, Sang-Hoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.302-305
    • /
    • 2016
  • In this paper, a low on-resistance and high current driving capability trench gate power metal-oxide-semiconductor field-effect transistor (MOSFET) incorporating a current sensing feature is proposed and evaluated. In order to realize higher cell density, higher current driving capability, cost-effective production, and higher reliability, self-aligned trench etching and hydrogen annealing techniques are developed. While maintaining low threshold voltage and simultaneously improving gate oxide integrity, the double-layer gate oxide technology was adapted. The trench gate power MOSFET was designed with a 0.6 μm trench width and 3.0 μm cell pitch. The evaluated on-resistance and breakdown voltage of the device were less than 24 mΩ and 105 V, respectively. The measured sensing ratio was approximately 70:1. Sensing ratio variations depending on the gate applied voltage of 4 V ~ 10 V were less than 5.6%.

Analysis for Breakdown Voltage of Double Gate MOSFET according to Device Parameters (소자파라미터에 따른 DGMOSFET의 항복전압분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.372-377
    • /
    • 2013
  • This paper have presented the breakdown voltage for double gate(DG) MOSFET. The analytical solution of Poisson's equation and Fulop's breakdown condition have been used to analyze for breakdown voltage. The double gate(DG) MOSFET has the advantage to reduce the short channel effects as improving the current controllability of gate. But we need the study for the breakdown voltage of DGMOSFET since the decrease of the breakdown voltage is unavoidable. To approximate with experimental values, we have used the Gaussian function as charge distribution for Poisson's equation, and the change of breakdown voltage has been observed for device geometry. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. As a result to observe the breakdown voltage, the smaller channel length and the higher doping concentration become, the smaller the breakdown voltage becomes. Also we have observed the change of the breakdown voltage for gate oxide thickness and channel thickness.

A Study on the Temperature Variation Characteristics of Power VDMOSFET (전력 VDMOSFET의 온도변화 특성에 관한 연구)

  • Lee, Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.278-284
    • /
    • 1986
  • Double-diffused metal oxide power semiconductor field effect transistors are used extensively in recent years in various circuit applications. The temperature variation of the drain current at a fixed bias shows both positive and negative resistance characteristics depending on the gate threshold voltage and gate-to source bias votage. In this paper, the decision method of the gate crossover voltage by the temperature variation and a new method to determine the gate threshold voltage graphecally are presented.

  • PDF

Linearity Optimization of DG MOSFETs for RF Applications

  • Kim, Dong-Hwee;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.897-900
    • /
    • 2005
  • RF linearity of double-gate MOSFETs is investigated using accurate two-dimensional simulations. The linearity has been analyzed using the Talyor series. Transconductance is dominant nonlinear source of CMOS. It is shown that DGMOSFET linearity can be improved by a careful optimization of channel thickness, gate oxide thickness, gate length, overlap length and channel doping concentration. The minimum $P_{IP3}$ data are compared in each case. It is shown that DG-MOSFET linearity can be improved by a careful optimization of channel thickness, gate oxide thickness, gate length, overlap length and channel doping concentration..

  • PDF

Subthreshold Swing Model Using Scale Length for Symmetric Junctionless Double Gate MOSFET (대칭형 무접합 이중게이트 MOSFET에서 스케일 길이를 이용한 문턱전압 이하 스윙 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.142-147
    • /
    • 2021
  • We present a subthreshold swing model for a symmetric junctionless double gate MOSFET. The scale length λ1 required to obtain the potential distribution using the Poisson's equation is a criterion for analyzing the short channel effect by an analytical model. In general, if the channel length Lg satisfies Lg > 1.5λ1, it is known that the analytical model can be sufficiently used to analyze short channel effects. The scale length varies depending on the channel and oxide thickness as well as the dielectric constant of the channel and the oxide film. In this paper, we obtain the scale length for a constant permittivity (silicon and silicon dioxide), and derive the relationship between the scale length and the channel length satisfying the error range within 5%, compared with a numerical method. As a result, when the thickness of the oxide film is reduced to 1 nm, even in the case of Lg < λ1, the analytical subthreshold swing model proposed in this paper is observed to satisfy the error range of 5%. However, if the oxide thickness is increased to 3 nm and the channel thickness decreased to 6 nm, the analytical model can be used only for the channel length of Lg > 1.8λ1.

A Study of SCEs and Analog FOMs in GS-DG-MOSFET with Lateral Asymmetric Channel Doping

  • Sahu, P.K.;Mohapatra, S.K.;Pradhan, K.P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.647-654
    • /
    • 2013
  • The design and analysis of analog circuit application on CMOS technology are a challenge in deep sub-micrometer process. This paper is a study on the performance value of Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Gate Stack and the channel engineering Single Halo (SH), Double Halo (DH). Four different structures have been analysed keeping channel length constant. The short channel parameters and different sub-threshold analog figures of merit (FOMs) are analysed. This work extensively provides the device structures which may be applicable for high speed switching and low power consumption application.