Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.5.302

High-Current Trench Gate DMOSFET Incorporating Current Sensing FET for Motor Driver Applications  

Kim, Sang-Gi (Electronics and Telecommunications Research Institute)
Won, Jong-Il (Electronics and Telecommunications Research Institute)
Koo, Jin-Gun (Electronics and Telecommunications Research Institute)
Yang, Yil-Suk (Electronics and Telecommunications Research Institute)
Park, Jong-Moon (Electronics and Telecommunications Research Institute)
Park, Hoon-Soo (Department of Green Energy Engineering, Uiduk University)
Chai, Sang-Hoon (Department of Electronic Engineering, Hoseo University)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.5, 2016 , pp. 302-305 More about this Journal
Abstract
In this paper, a low on-resistance and high current driving capability trench gate power metal-oxide-semiconductor field-effect transistor (MOSFET) incorporating a current sensing feature is proposed and evaluated. In order to realize higher cell density, higher current driving capability, cost-effective production, and higher reliability, self-aligned trench etching and hydrogen annealing techniques are developed. While maintaining low threshold voltage and simultaneously improving gate oxide integrity, the double-layer gate oxide technology was adapted. The trench gate power MOSFET was designed with a 0.6 μm trench width and 3.0 μm cell pitch. The evaluated on-resistance and breakdown voltage of the device were less than 24 mΩ and 105 V, respectively. The measured sensing ratio was approximately 70:1. Sensing ratio variations depending on the gate applied voltage of 4 V ~ 10 V were less than 5.6%.
Keywords
Power MOSFET; Trench gate MOSFET; Current sensing FET; Current sensing ratio; Trench etching;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 N. Zhao, W. Liao, and H. Sino, Digest of Analog Dialogue, 44, 1 (2012).
2 H. F. Jin, H. L. Piao, Z. Y. Cui, and N. S. Kim, Trans. Electr. Electron. Mater., 11, 24 (2010). [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.1.024]   DOI
3 Y. Xiao, J. Cao, J. D. Chen, and K. Spring, Proc. of Applied Power Electronics Conference and Exposition (Fort Worth, USA, 2005) p. 766.
4 J. D. Kim, T. M. Roh, S. G. Kim, D. W. Lee, J. G. Koo, and K. I. Cho, IEEE Trans. Electron Devices, ED-50, 378 (2003).
5 S. G. Kim, H. S. Park, D. H. Kah, K. I. Na, Y. S. Yang, J. G. Koo, J. D. Kim, and J. H. Lee, J. Korean Phys. Soc., 60, 1552 (2012). [DOI: http://dx.doi.org/10.3938/jkps.60.1552]   DOI
6 S. G. Kim, H. S. Park, K. I. Na, S. W. Yoo, J. I. Won, J. G. Koo, S. H. Chai, H. M. Park, Y. S. Yang, and J. H. Lee, ETRI Journal, 35, 632 (2013). [DOI: http://dx.doi.org/10.4218/etrij.13.1912.0012]   DOI
7 K. I. Na, J. I. Won, J. G. Koo, S. G. Kim, J. D. Kim, Y. S. Yang, and J. H. Lee, ETRI Journal, 35, 425 (2013). [DOI: http://dx.doi.org/10.4218/etrij.13.0112.0246]   DOI
8 R. H. Zhu and T. P. Chow, Proc. ISPSD (San Francisco, USA, 1996) p. 189.