• Title/Summary/Keyword: Distribution record

Search Result 500, Processing Time 0.024 seconds

CHARACTERIZATIONS OF THE LOMAX, EXPONENTIAL AND PARETO DISTRIBUTIONS BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.149-153
    • /
    • 2009
  • Let {$X_{n},\;n\;\geq\;1$} be a sequence of independent and identically distributed random variables with absolutely continuous cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x). Suppose $X_{U(m)},\;m = 1,\;2,\;{\cdots}$ be the upper record values of {$X_{n},\;n\;\geq\;1$}. It is shown that the linearity of the conditional expectation of $X_{U(n+2)}$ given $X_{U(n)}$ characterizes the lomax, exponential and pareto distributions.

  • PDF

A NOTE ON THE CHARACTERIZATIONS OF THE GUMBEL DISTRIBUTION BASED ON LOWER RECORD VALUES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.285-289
    • /
    • 2017
  • Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(x) < 1 for all x in ($-{\infty},\;{\infty}$). In this paper, we obtain the characterizations of the Gumbel distribution by lower record values.

CHARACTERIZATIONS BASED ON THE INDEPENDENCE OF THE EXPONENTIAL AND PARETO DISTRIBUTIONS BY RECORD VALUES

  • LEE MIN-YOUNG;CHANG SE-KYUNG
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.497-503
    • /
    • 2005
  • This paper presents characterizations on the independence of the exponential and Pareto distributions by record values. Let ${X_{n},\;n {\ge1}$ be a sequence of independent and identically distributed(i.i.d) random variables with a continuous cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). $Let{\;}Y_{n} = max{X_1, X_2, \ldots, X_n}$ for n \ge 1. We say $X_{j}$ is an upper record value of ${X_{n},{\;}n\ge 1}, if Y_{j} > Y_{j-1}, j > 1$. The indices at which the upper record values occur are given by the record times {u(n)}, n \ge 1, where u(n) = $min{j|j > u(n-1), X_{j} > X_{u(n-1)}, n \ge 2}$ and u(l) = 1. Then F(x) = $1 - e^{-\frac{x}{a}}$, x > 0, ${\sigma} > 0$ if and only if $\frac {X_u(_n)}{X_u(_{n+1})} and X_u(_{n+1}), n \ge 1$, are independent. Also F(x) = $1 - x^{-\theta}, x > 1, {\theta} > 0$ if and only if $\frac {X_u(_{n+1})}{X_u(_n)}{\;}and{\;} X_{u(n)},{\;} n {\ge} 1$, are independent.

Objective Bayesian inference based on upper record values from Rayleigh distribution

  • Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • The Bayesian approach is a suitable alternative in constructing appropriate models for observed record values because the number of these values is small. This paper provides an objective Bayesian analysis method for upper record values arising from the Rayleigh distribution. For the objective Bayesian analysis, the Fisher information matrix for unknown parameters is derived in terms of the second derivative of the log-likelihood function by using Leibniz's rule; subsequently, objective priors are provided, resulting in proper posterior distributions. We examine if these priors are the PMPs. In a simulation study, inference results under the provided priors are compared through Monte Carlo simulations. Through real data analysis, we reveal a limitation of the appropriate confidence interval based on the maximum likelihood estimator for the scale parameter and evaluate the models under the provided priors.

Higher Order Moments of Record Values From the Inverse Weibull Lifetime Model and Edgeworth Approximate Inference

  • Sultan, K.S.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • In this paper, we derive exact explicit expressions for the triple and quadruple moments of the lower record values from inverse the Weibull (IW) distribution. Next, we present and calculate the coefficients of the best linear unbiased estimates of the location and scale parameters of IW distribution (BLUEs) for different choices of the shape parameter and records size. We then use the higher order moments and the calculated BLUEs to compute the mean, variance, and the coefficients of skewness and kurtosis of certain linear functions of lower record values. By using the coefficients of the skewness and kurtosis, we develop approximate confidence intervals for the location and scale parameters of the IW distribution using Edgeworth approximate values and then compare them with the corresponding intervals constructed through Monte Carlo simulations. Finally, we apply the findings of the paper to some simulated data.

  • PDF

CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • Chang, Se-Kyung;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.375-381
    • /
    • 2006
  • This paper presents characterizations based on the identical distribution and the finite moments of the exponential distribution by record values. We prove that $X{\in}EXP({\sigma})$, ${\sigma}$>0, if and only if $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for n > 1 and $k{\geq}1$ are identically distributed. Also, we show that $X{\in}EXP({\sigma})$, ${\sigma}$>0, if and only if $E(X_{U(n+k)}-X_{U(n)})=E(X_{U(n)}-X_{U(n-k)})$ for n>1 and $k{\geq}1$.

  • PDF

ON CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY THE INDEPENDENT PROPERTY OF UPPER RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • We present characterizations of the Pareto distribution by the independent property of upper record values in such a way that F(x) has a Pareto distribution if and only if $\frac{X_{U(n)}}{X_{U(m)}}$ and $X_{U(m)}$ are independent for $1{\leq}m. Futhermore, the characterizations should find that F(x) has a Pareto distribution if and only if $\frac{X_{U(n)}}{X_{U(n)}{\pm}X_{U(m)}}$ and $X_{U(m)}$ are independent for $1{\leq}m.

ON CHARACTERIZATIONS OF THE CONTINUOUS DISTRIBUTIONS BY INDEPENDENCE PROPERTY OF THE QUOTIENT-TYPE UPPER RECORD VALUES

  • LEE, MIN-YOUNG;JIN, HYUN-WOO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.245-249
    • /
    • 2019
  • In this paper we obtain characterizations of a family of continuous probability distribution by independence property of upper record values. Also, we introduce some examples of the characterizations of distributions from these general classes of continuous distributions.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE PARETO DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the Pareto distribution. Let {$X_n,n\qeq1$}be a sequence of independent and identically distributed random variables with a common continuous distribution function(cdf) F($chi$) and probability density function(pdf) f($chi$). Let $Y_n\;=\;mas{X_1,X_2,...,X_n}$ for $ngeq1$. We say $X_{j}$ is an upper record value of {$X_{n},n\geq1$}, if $Y_{j}$$Y_{j-1}$,j>1. The indices at which the upper record values occur are given by the record times ${u( n)}n,\geq1$, where u(n) = min{j|j >u(n-l), $X_{j}$$X_{u(n-1)}$,n\qeq2$ and u(l) = 1. Suppose $X{\epsilon}PAR(\frac{1}{\beta},\frac{1}{\beta}$ then E$(\frac{{X^\tau}}_{u(m)}}{{X^{s+1}}_{u(n)})\;=\;\frac{1}{s}E$ E$(\frac{{X^\tau}}_{u(m)}{{X^s}_{u(n-1)}})$ - $\frac{(1+\betas)}{s}E(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}}$ and E$(\frac{{X^{\tau+1}}_{u(m)}}{{X^s}_{u(n)}})$ = $\frac{1}{(r+1)\beta}$ [E$(\frac{{X^{\tau+1}}}_u(m)}{{X^s}_{u(n-1)}})$ - E$(\frac{{X^{\tau+1}}_u(m)}}{{X^s}_{u(n-1)}})$ - (r+1)E$(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}})$]

  • PDF

RECURRENCE RELATION FOR QUOTIENTS OF THE POWER DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the power distribution. Let {$X_n$, $n{\geq}1$} be a sequence of independent an identically distributed random variables with a common continuous distribution function(cdf) $F(x)$ and probability density function(pdf) $f(x)$. Let $Y_n=max\{X_1,X_2,{\cdots},X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of {$X_n$, $n{\geq}1$}, if $Y_j$ > $Y_{j-1}$, $j$ > 1. The indices at which the upper record values occur are given by the record times {$u(n)$}, $n{\geq}1$, where $u(n)=min\{j{\mid}j>u(n-1),X_j>X_{u(n-1)},n{\geq}2\}$ and $u(1)=1$. Suppose $X{\in}POW(0,1,{\theta})$ then $$E\left(\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}\right)=\frac{\theta}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{(s-\theta)}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}\right)\;and\;E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}\right)=\frac{\theta}{n+1}\left[E\left(\frac{X^{r+1}_{u(m-1)}}{X^s_{u(n+1)}}\right)-E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{r+1}{\theta}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}}\right)\right]$$.

  • PDF