ON CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY THE INDEPENDENT PROPERTY OF UPPER RECORD VALUES

MIN-YOUNG LEE* AND EUN-HYUK LIM**

ABSTRACT. We present characterizations of the Pareto distribution by the independent property of upper record values in such a way that F(x) has a Pareto distribution if and only if $\frac{X_{U(n)}}{X_{U(m)}}$ and $X_{U(m)}$ are independent for $1 \leq m < n$. Futhermore, the characterizations should find that F(x) has a Pareto distribution if and only if $\frac{X_{U(n)}}{X_{U(n)} \pm X_{U(m)}}$ and $X_{U(m)}$ are independent for $1 \leq m < n$.

1. Introduction

Let $\{X_n, n \ge 1\}$ be a sequence of independent identically distributed (i.i.d.) random variables with cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). Let $Y_n = max(min)$ $\{X_1, X_2, \dots, X_n\}$ for $n \ge 1$. We say X_j is an upper(lower) record value of this sequence, if $Y_j > (\langle \rangle Y_{j-1}$ for j > 1. By definition, X_1 is an upper as well as a lower record value. The indices at which the upper record values occur are given by the record times $\{U(n), n \ge 1\}$, where $U(n) = min\{j \mid j > U(n-1), X_j > X_{U(n-1)}, n \ge 2\}$ with U(1) = 1. We assume that all upper record values $X_{U(i)}$ for $i \ge 1$ occur at a sequence $\{X_n, n \ge 1\}$ of i.i.d. random variables.

We call the random variable $X \in PAR(a, \alpha)$ if the corresponding probability cdf F(x) of X is of the form

(1.1)
$$F(x) = \begin{cases} 1 - \left(\frac{a}{x}\right)^{\alpha}, \ x \ge a, \ \alpha > 0\\ 0, \ otherwise. \end{cases}$$

Received December 30, 2010; Accepted February 15, 2011.

2010 Mathematics Subject Classification: Primary 60E05, 62G30, 62H05.

Key words and phrases: absolutely continuous, characterizations, independent and identically distributed, Pareto distribution, upper record values.

Correspondence should be addressed to Min-Young Lee, leemy@dankook.ac.kr.

The research was conducted by the research fund of Dankook university in 2010.

Min-Young Lee and Eun-Hyuk Lim

Lee and Chang(2008) obtained characterization that $F(x) = 1 - e^{-x^{\alpha}}$ for all x > 0 and $\alpha > 0$, if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)} + X_{U(n)}}$ and $X_{U(n+1)}$ are independent for $n \ge 1$. Also, Lee and Lim(2010) generalized that $F(x) = 1 - e^{-x^{\alpha}}$ for all x > 0 and $\alpha > 0$, if and only if $\frac{X_{U(m)}}{X_{U(n)}}$ and $X_{U(n)}$ are independent for $1 \le m < n$.

In this article, by the similar way of above papers, we obtain characterizations of the Pareto distribution by the independent property of upper record values.

2. Main results

THEOREM 2.1. Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(1) = 0 and F(x) < 1 for all x > 1. Then $F(x) = 1 - x^{-\alpha}$ for all x > 1, $\alpha > 0$, if and only if $\frac{X_{U(n)}}{X_{U(m)}}$ and $X_{U(m)}$ are independent for $1 \le m < n$.

Proof. The joint pdf $f_{m,n}(x,y)$ of $X_{U(m)}$ and $X_{U(n)}$ is found to be

(2.1)
$$f_{m,n}(x,y) = \frac{R(x)^{m-1}}{\Gamma(m)} r(x) \frac{\{R(y) - R(x)\}^{n-m-1}}{\Gamma(n-m)} f(y)$$

where R(x) = -ln(1 - F(x)) and $r(x) = \frac{d}{dx}(R(x))$ Consider the functions $U = X_{U(m)}$ and $W = \frac{X_{U(m)}}{X_{U(m)}}$. It follows that $x_{U(m)} = u, x_{U(m)} = uw$ and |J| = u. Thus we can write the joint pdf $f_{U,W}(u,w)$ of U and W as

(2.2)
$$f_{U,W}(u,w) = \frac{R(vw)^{m-1}}{(m-1)!} r(vw) \frac{\{R(w) - R(vw)\}^{n-m-1}}{(n-m-1)!} wf(w)$$

for u > 1, w > 1.

If $F(x) = 1 - x^{-\alpha}$ for all $x > 1, \alpha > 0$, then we get

(2.3)
$$f_{U,W}(u,w) = \frac{\alpha^n}{\Gamma(m)\Gamma(n-m)} u^{-\alpha-1} \{\ln u\}^{m-1} w^{-\alpha-1} \{\ln w\}^{n-m-1}$$

for all u > 1, w > 1 and $\alpha > 0$.

86

The marginal pdf of W is given by

(2.4)
$$f_W(w) = \int_1^\infty f_{U,W}(u, w) du \\ = \frac{\alpha^{n-m}}{\Gamma(n-m)} w^{-\alpha-1} \{\ln w\}^{n-m-1}$$

for all w > 1, $\alpha > 0$.

Also, the pdf $f_U(u)$ of U is given by

(2.5)
$$f_U(u) = \frac{R(u)^{m-1}}{\Gamma(m)} f(u) = \frac{\alpha^m}{\Gamma(m)} u^{-\alpha - 1} \{\ln u\}^{m-1}.$$

From (2.3), (2.4) and (2.5), we obtain $f_{U,W}(u, w) = f_U(u)f_W(w)$. Hence U and W are independent for $1 \le m < n$.

Now we will prove the sufficient condition.

Let us use the transformation $U = X_{U(m)}$ and $W = \frac{X_{U(m)}}{X_{U(m)}}$. The Jacobian of the transformation is |J| = u. Thus we can write the joint pdf $f_{U,W}(u, w)$ of U and W as

(2.6)
$$f_{U,W}(u,w) = \frac{R(u)^{m-1}}{\Gamma(m)} r(u) \frac{\{R(uw) - R(u)\}^{n-m-1}}{\Gamma(n-m)} f(uw)u$$

for all u > 1, w > 1 and $\alpha > 0$.

The pdf $f_U(u)$ of U is given by

(2.7)
$$f_U(u) = \frac{R(u)^{m-1}}{\Gamma(m)} f(u)$$

for all $u > 1, m \ge 1$.

Since U and W are independent, we get the pdf $f_W(w)$ of W from (2.6), (2.7) as

$$f_W(w) = \frac{1}{\Gamma(n-m)} (R(uw) - R(u))^{n-m-1} \frac{f(uw)u}{\bar{F}(u)}$$
$$= \frac{1}{\Gamma(n-m)} \left(-\ln\frac{\bar{F}(uw)}{\bar{F}(u)} \right)^{n-m-1} \frac{\bar{F}(uw)}{\bar{F}(u)} \left\{ \frac{\partial}{\partial w} \left(-\ln\frac{\bar{F}(uw)}{\bar{F}(u)} \right) \right\}$$

where $\overline{F}(x) = 1 - F(x)$.

By the Lemma of Ahsanullah [see Ahsanullah(1995), p. 48], the pdf $f_W(w)$ of W is a function of w only. Thus we have

(2.8)
$$\bar{F}(uw) = \bar{F}(u)G(w)$$

,

where G(w) is a function of w only. By functional equations[see Aczel (1966)], the only continuous solution of (2.8) with the boundary conditions $\bar{F}(1) = 1$ and $\bar{F}(\infty) = 0$ is

$$\bar{F}(x) = x^{-\alpha}$$

for all x > 1 and $\alpha > 0$. Thus we have $F(x) = 1 - x^{-\alpha}$. This completes the proof.

THEOREM 2.2. Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(1) = 0 and F(x) < 1 for all x > 1. Then $F(x) = 1 - x^{-\alpha}$ for all x > 1, $\alpha > 0$, if and only if $\frac{X_{U(n)}}{X_{U(n)} + X_{U(m)}}$ and $X_{U(m)}$ are independent for $1 \le m < n$.

Proof. The necessary condition is easy to establish. Now we prove the sufficient condition.

Let us use the transformation $U = X_{U(m)}$ and $V = \frac{X_{U(n)}}{X_{U(n)} + X_{U(m)}}$. The Jacobian of the transformation is $|J| = \frac{u}{(1-v)^2}$. Thus we can write the joint pdf $f_{U,V}(u,v)$ of U and V as

(2.9)
$$\begin{aligned} & f_{U,V}(u,v) \\ & = \frac{R(u)^{m-1}}{\Gamma(m)} r(u) \frac{\{R(\frac{uv}{1-v}) - R(u)\}^{n-m-1}}{\Gamma(n-m)} f(\frac{uv}{1-v}) \frac{u}{(1-v)^2} \end{aligned}$$

for all u > 1, $\frac{1}{2} < v < 1$ and $\alpha > 0$.

The pdf $f_U(u)$ of U is given by

(2.10)
$$f_U(u) = \frac{R(u)^{m-1}}{\Gamma(m)} f(u)$$

for u > 1.

We get the pdf $f_V(v)$ of V from (2.9), (2.10) as

$$f_{V}(v) = \frac{1}{\Gamma(n-m)} \left(R(\frac{uv}{1-v}) - R(u) \right)^{n-m-1} \frac{f(\frac{uv}{1-v}) \frac{u}{(1-v)^{2}}}{\bar{F}(u)} = \frac{1}{\Gamma(n-m)} \left(-\ln \frac{\bar{F}(\frac{uv}{1-v})}{\bar{F}(u)} \right)^{n-m-1} \frac{\bar{F}(\frac{uv}{1-v})}{\bar{F}(u)} \left\{ \frac{\partial}{\partial w} \left(-\ln \frac{\bar{F}(\frac{uv}{1-v})}{\bar{F}(u)} \right) \right\}.$$

By the independent property of U and V, the pdf $f_V(v)$ of V is a function of v only [see Ahsanullah(1995), p. 48]. Thus we must have

(2.11)
$$\bar{F}(\frac{uv}{1-v}) = \bar{F}(u)G(\frac{v}{1-v})$$

where $G(\frac{v}{1-v})$ is a function of v only. By functional equations[see Aczel (1966)], the only continuous solution of (2.11) with the boundary conditions $\bar{F}(1) = 1$ and $\bar{F}(\infty) = 0$ is

$$\bar{F}(x) = x^{-\alpha}$$

for all x > 1 and $\alpha > 0$. Thus we have $F(x) = 1 - x^{-\alpha}$. This completes the proof.

THEOREM 2.3. Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. random variables with cdf F(x) which is absolutely continuous with pdf f(x) and $\overline{F}(1) = 1$ and F(x) < 1 for all x > 1. Then $F(x) = 1 - x^{-\alpha}$ for all x > 1, $\alpha > 0$, if and only if $\frac{X_{U(n)}}{X_{U(n)} - X_{U(m)}}$ and $X_{U(m)}$ are independent for $1 \le m < n$.

Proof. The proof can be done in exactly the same way as that of Theorem 2.2. \Box

References

- J. Aczel, Lectures on Functional Equations and Their Applications, Academic Press, NY, 1966.
- [2] M. Ahsanullah, Record Statistics, Inc, Dommack NY, 1995.
- [3] M. Y. Lee and S. K. Chang, Characterizations of the weibull distribution by the independence of the record values, J. Appl. Math. and Computing 15 (2008), 163-167.
- [4] M. Y. Lee and E. H. Lim, On Characterizations of the weibull Distribution by the independent property of record values, J. Chungcheong Math. Soc. 23 (2010), 245-250.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: leemy@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: ehlim@dankook.ac.kr