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RECURRENCE RELATION FOR QUOTIENTS OF THE
POWER DISTRIBUTION BY RECORD VALUES

Min-Young Lee and Se-Kyung Chang

Abstract. In this paper we establish some recurrence relations

satisfied by quotient moments of upper record values from the power

distribution. Let {Xn, n ≥ 1} be a sequence of independent and
identically distributed random variables with a common continu-

ous distribution function(cdf) F (x) and probability density func-

tion(pdf) f(x). Let Yn = max{X1, X2, · · · , Xn} for n ≥ 1. We say
Xj is an upper record value of {Xn, n ≥ 1}, if Yj > Yj−1, j > 1.

The indices at which the upper record values occur are given by the

record times {u(n)}, n ≥ 1, where u(n) = min{j|j > u(n−1), Xj >
Xu(n−1), n ≥ 2} and u(1) = 1. Suppose X ∈ POW (0, 1, θ) then
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables with a common cdf F (x) and pdf f(x). Sup-
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pose Yn = max{X1, X2, · · · , Xn} for n ≥ 1. We say Xj is an upper
record value of this sequence if Yj > Yj−1, j > 1. We define the record
times u(n) by u(1) = 1 and

u(n) = min{ j | j > u(n− 1) , Xj > Xu(n−1) , n ≥ 2 }.

The record times of the sequence {Xn, n ≥ 1} are random variables
and are the same as those for the sequence {F (Xn), n ≥ 1}. We know
that the distribution of u(n) does not depend on F (x). Hence, the dis-
tribution of u(n) can be determined by considering the uniform distri-
bution F (x) = x. We will call the random variable X ∈ POW (0, 1, θ)
if the corresponding probability cumulative function F (x) of x is of the
form

(1) F (x) =


1− (1− x)θ if 0 < x < 1 and θ > 0

0 otherwise.

Some characterizations of the power distribution are known. But
mainly some recurrence relations satisfied by the single and product
moments of record values. Such results have been established by Ah-
sanullah[1]. Balakrishnan, Ahsanullah and Chan[4, 5], and Balakrish-
nan and Ahsanullah[2, 3] for the extreme value, exponential, Pareto
and generalized extreme value distributions. And Dallas[6] character-
izes the power and Pareto distributions using the conditional expecta-
tions.

In this paper, we will give some recurrence relations satisfied by the
quotient moments of upper record values from the power distribution.

2. Main Results

Theorem 2.1. For 1 ≤ m ≤ n−2, r = 0, 1, 2, · · · and s = 1, 2, · · · ,

E

(
Xr

u(m)

Xs+1
u(n)

)
=

θ

s
E

(
Xr

u(m)

Xs
u(n−1)

)
+

(s− θ)
s

E

(
Xr

u(m)

Xs
u(n)

)
.



Recurrence relation for quotients of the power distribution by record values 17

Proof. First of all, we have that for the power distribution in (1),
(1− x)f(x) = θ[1− F (x)] . The joint pdf of Xu(m) and Xu(n) is

fm,n(x, y) =
1

Γ(m)Γ(n−m)
Rm−1(x)r(x)[R(y)−R(x)]n−m−1f(y).

Let us consider for 1 ≤ m ≤ n−2, r = 0, 1, 2, · · · and s = 1, 2, · · · ,
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This completes the proof. �
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Corollary 2.2. For m ≥ 1, r = 0, 1, 2, · · · and s = 1, 2, · · · ,
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Proof. Upon substituting n = m+1 in Theorem 2.1 and simplifying,
then we have
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Theorem 2.3. For 1 ≤ m ≤ n− 2 and r, s = 0, 1, 2, · · · ,
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Proof. In the same manner as Theorem 2.1, let us consider for 1 ≤
m ≤ n− 2 and r, s = 0, 1, 2, · · · ,
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Since the power distribution, r(x) =
f(x)

1− F (x)
=

θ
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stituting the above expressions and simplifying the resulting equations,
we obtain that
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This completes the proof. �

Corollary 2.4. For m ≥ 1 and r, s = 0, 1, 2, · · · ,
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Proof. Upon substituting n = m+1 in Theorem 2.3 and simplifying,
then we have
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