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Abstract
The Bayesian approach is a suitable alternative in constructing appropriate models for observed record values

because the number of these values is small. This paper provides an objective Bayesian analysis method for upper
record values arising from the Rayleigh distribution. For the objective Bayesian analysis, the Fisher information
matrix for unknown parameters is derived in terms of the second derivative of the log-likelihood function by
using Leibniz’s rule; subsequently, objective priors are provided, resulting in proper posterior distributions. We
examine if these priors are the PMPs. In a simulation study, inference results under the provided priors are
compared through Monte Carlo simulations. Through real data analysis, we reveal a limitation of the appropriate
confidence interval based on the maximum likelihood estimator for the scale parameter and evaluate the models
under the provided priors.

Keywords: Bayesian analysis, Fisher information, objective priors, Rayleigh distribution, upper
record values

1. Introduction

Observations of survival times of objects, precipitation levels, Olympic records, or daily stock prices
greater than the existing respective records, are called the upper record values. This concept was intro-
duced by Chandler (1952). Let {X1, . . . , Xn} be a sequence of independent and identically distributed
random variables with the cumulative distribution function (CDF) and probability density function
(PDF). Then, we can say that x j is an upper record value if x j > xi for every i < j, and the record time
sequence {U(k), k ∈ N} is denoted as

U(k) =
{

1 (with probability 1), k = 1,
min{ j| j > U(k − 1), X j > XU(k−1)}, k ≥ 2,

The statistical inference based on the record values has limitations due to small sample sizes, although
the modelling for small samples is an important issue in statistical application. In addition, the like-
lihood function for unknown parameters and the predictive likelihood function respectively provided
by Arnold et al. (1998) and Basak and Balakrishnan (2003) can yield inappropriate inference results
for small sample sizes, as they lead to the likelihood equation in the maximum likelihood method. To
overcome these limitations, Wang et al. (2015) proposed a new inference method dependent on pivotal
quantities in the family of proportional reversed hazard distributions based on the record values. Wang
1 Corresponding author: Department of Statistics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566,

Korea. E-mail: kim.1252@knu.ac.kr

Published 31 July 2018 / journal homepage: http://csam.or.kr
c⃝ 2018 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



412 Jung In Seo, Yongku Kim

and Ye (2015) provided bias-corrected estimators and exact confidence intervals (CIs) for unknown
parameters of the Weibull distribution based on the upper record values. The Bayesian approach can
be a useful alternative for small sample sizes if one has sufficient prior information. Jaheen (2003)
developed a Bayesian inference under a subjective prior for unknown parameters of the Gompertz
distribution based on upper record values. Madi and Raqab (2004) provided a subjective Bayesian
inference to predict the future upper record values based on the observed upper record values from
the Pareto distribution.

However, subjective Bayesian approaches cannot be properly used in situations in which little or
no prior information is available. In this case, the Bayesian inference can rely on the noninformative
or objective priors. The most widely used noninformative priors are the Jeffreys prior (Jeffreys, 1961)
and the reference prior (Bernardo, 1979; Berger and Bernardo, 1989, 1992). In addition, the proba-
bility matching prior (PMP) introduced by Welch and Peers (1963) has gained recent popularity due
to its frequentist properties.

This article provides an objective Bayesian approach based on noninformative priors to estimate
the unknown parameters of the two-parameter Rayleigh distribution with the CDF

F(x) = 1 − exp
[
− (x − µ)2

2σ2

]
and the PDF

f (x) =
x − µ
σ2 exp

[
− (x − µ)2

2σ2

]
, x > µ, σ > 0, (1.1)

where µ is the location parameter and σ is the scale parameter. The Rayleigh distribution was first
considered by Rayleigh (1880) as the distribution of the amplitude resulting from the addition of
harmonic oscillations. This distribution has since been applied in many fields such as communication
engineering and electro vacuum devices (Polovko, 1968; Dyer and Whisenand, 1973). Another impor-
tant characteristic of this distribution is its failure rate function is an increasing linear function of time.
Therefore, some authors employed this distribution to construct a statistical model fitting real data.
Raqab and Madi (2002) discussed the predictive distribution of the total testing time up to a certain
failure in a future sample, as well as the remaining testing time until all the items in the original sample
have failed when doubly censored data are observed. Wu et al. (2006) derived the Bayes estimator
of the scale parameter and the Bayes predictors of future observations when progressively Type-II
censored data are observed. Kim and Han (2009) derived the Bayes estimator of the scale parameter
and the reliability function based on multiply Type-II censored data. Lee et al. (2011) constructed a
Bayes estimator of the lifetime performance of products and proposed a Bayesian test to assess this
performance when progressively Type-II censored data are observed. Soliman and Al-Aboud (2008)
provided a subjective Bayesian inference method for the scale parameter and the reliability and failure
rate functions based on the record values. Seo and Kim (2017) provided a noninformative prior with
partial information to estimate unknown parameters and predict the future upper record values.

This article focuses on inference based on the objective priors to avoid the risk from inappropri-
ate prior information and reduce the effort in obtaining sufficient prior information. To develop the
method based on the objective priors, it needs to obtain a closed form of the Fisher information matrix
for unknown parameters (µ, σ), as the popular objective priors such as the Jeffreys and reference pri-
ors; in addition, the PMPs are obtained based on the Fisher information matrix. We provide the Fisher
information matrix for (µ, σ) in terms of the second derivative of the log-likelihood using Leibniz’s
rule and develop an objective Bayesian analysis method.



Objective Bayesian inference based on upper record values from Rayleigh distribution 413

The rest of this paper is organized as follows. Section 2 provides the Fisher information matrix
in terms of the second derivative of the log-likelihood and preferred objective priors (the Jeffreys
and reference priors and the second-order PMP) for unknown parameters (µ, σ). In the following
section we assess an objective Bayesian approach based on the provided priors. Section 4 assesses the
proposed objective Bayesian analysis method through the Monte Carlo simulations and applies the
method on a set of survival data for lung cancer patients. Section 5 concludes this article.

2. Objective priors

This section provides the Fisher information matrix for unknown parameters (µ, σ) of the Rayleigh
distribution based on the upper record values for deriving the objective priors and then proposes
objective Bayesian models under the derived priors.

Let XU(i) be the ith upper record value from a PDF with an unknown parameter θ. Then, the Fisher
information for θ is given by

I(θ) = E

( ∂∂θ log fXU(i) (x)
)2 , (2.1)

where

fXU(i) (x) =
1
Γ(i)

[− log(1 − F(x))
]i−1 f (x) (2.2)

is the marginal density function of XU(i) provided in Ahsanullah (1995). Under certain regularity
conditions, the Fisher information (2.1) is given by

I(θ) = −E
(
∂2

∂θ2 log fXU(i) (x)
)

(2.3)

which has computational convenience compared with (2.1). To employ the Fisher information (2.3),
the interchangeability of differentiation and integration operators for θ is a necessary condition. In
some cases, the operations of differentiation and integration do not hold provided that the support of
a probability distribution depends on an unknown parameter, for example, in the Laplace distribution
(Burkschat and Cramer, 2012) with the location parameter and uniform distribution on (0, θ) for some
θ > 0 (Romano and Siegel, 1986). The following results represent that integration and differential op-
erators are interchangeable; however, the support of the two-parameter Rayleigh distribution depends
on the location parameter µ.

Proposition 1. Let XU(i) be the ith upper record value from a two-parameter Rayleigh distribution.
Then,

∂

∂µ

∫ ∞

µ

fXU(i) (x)dx =
∫ ∞

µ

∂

∂µ
fXU(i) (x) = 0 (2.4)

and

∂2

∂µ2

∫ ∞

µ

fXU(i) (x)dx =
∫ ∞

µ

∂2

∂µ2 fXU(i) (x)dx = 0 (2.5)
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for i > 1, where

fXU(i) (x) =
(x − µ)2i−1

2i−1σ2iΓ(i)
exp

[
− (x − µ)2

2σ2

]
, x > µ, σ > 0 (2.6)

is the marginal density function of XU(i).

Proof: Suppose that the marginal density function (2.6) is integrable over an arbitrary finite subinter-
val (µ, b). Then, we have ∫ ∞

µ

∂

∂µ
fXU(i) (x)dx = lim

b→∞

∫ b

µ

∂

∂µ
fXU(i) (x)dx. (2.7)

By Leibniz’s rule, the right-hand side in (2.7) then becomes

lim
b→∞

∫ b

µ

∂

∂µ
fXU(i) (x)dx = lim

b→∞

[
∂

∂µ

∫ b

µ

fXU(i) (x)dx − fXU(i) (b)
∂b
∂µ
+ fXU(i) (µ)

∂µ

∂µ

]
= lim

b→∞

∂

∂µ

∫ b

µ

fXU(i) (x)dx

= lim
b→∞

∂

∂µ

[
FXU(i) (b) − FXU(i) (µ)

]
= 0,

where FXU(i) (·) is the CDF of XU(i). Therefore, the relationship in (2.4) holds. The relationship in (2.5)
can be proved in the same way.

Let

gXU(i) (x) =
∂

∂µ
fXU(i) (x).

Then, we have

gXU(i) (x) =
(x − µ)2i−2

2i−1σ2iΓ(i)

[( x − µ
σ

)2
− (2i − 1)

]
exp

[
− (x − µ)2

2σ2

]
. (2.8)

Suppose that the function (2.8) is integrable over an arbitrary finite subinterval (µ, b). Then,∫ ∞

µ

∂

∂µ
gXU(i) (x)dx = lim

b→∞

∫ b

µ

∂

∂µ
gXU(i) (x)dx.

= lim
b→∞

[
∂

∂µ

∫ b

µ

gXU(i) (x)dx − gXU(i) (b)
∂b
∂µ
+ gXU(i) (µ)

∂µ

∂µ

]
.

For i = 1, ∫ ∞

µ

∂

∂µ
gXU(i) (x)dx , 0
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because gXU(i) (µ)∂µ/∂µ , 0, but, for i > 1,∫ ∞

µ

∂

∂µ
gXU(i) (x)dx = lim

b→∞

∂

∂µ

∫ b

µ

gXU(i) (x)dx

= lim
b→∞

∂

∂µ

[
fXU(i) (b) − fXU(i) (µ)

]
= 0.

This completes the proof. �

Remark 1. By (2.4) in Proposition 1, we can obtain the result

E
(
∂

∂µ
log fXU(i) (x)

)
=

∫ ∞

µ

(
∂

∂µ
log fXU(i) (x)

)
fXU(i) (x)dx

=
∂

∂µ

∫ ∞

µ

fXU(i) (x)dx

= 0.

In addition, in

∂2

∂µ2 log fXU(i) (x) =
∂

∂µ

[
1

fXU(i) (x)
∂

∂µ
fXU(i) (x)

]

=

∂2

∂µ2 fXU(i) (x)

fXU(i) (x)
−

(
∂

∂µ
log fXU(i) (x)

)2

,

by taking the expectation, we have

E
[
∂2

∂µ2 log fXU(i) (x)
]
=

∫ ∞

µ

∂2

∂µ2 fXU(i) (x)dx −
∫ ∞

µ

(
∂

∂µ
log fXU(i) (x)

)2

fXU(i) (x)dx.

Therefore,

E

( ∂∂µ log fXU(i) (x)
)2 = −E

[
∂2

∂µ2 log fXU(i) (x)
]

(2.9)

by (2.5) in Proposition 1.

Remark 2. Let XU(i), . . . , XU(k) be the upper record values from the Rayleigh distribution with the
PDF (2.2). Then, the likelihood function based on XU(i), . . . , XU(k) is given by

L(µ, θ) = f (xU(k))
k−1∏
i=1

f (xU(i))
1 − F(xU(i))

. (2.10)

Then, we have

∂

∂µ
log L(µ, σ) =

∂

∂µ

 k∑
i=1

log f (xU(i)) −
k−1∑
i=1

log
(
1 − F(xU(i))

) .
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By taking the expectation,

E
(
∂

∂µ
log L(µ, σ)

)
=

k∑
i=1

E
[
∂

∂µ
log f (xU(i))

]
−

k−1∑
i=1

E
[
∂

∂µ
log

(
1 − F(xU(i))

)]
.

Then, the first term is zero by Remark 2 and the second term is also zero because − log
(
1 − F(xU(i))

)
has the standard exponential distribution. Therefore,

E
(
∂

∂µ
log L(µ, σ)

)
= 0. (2.11)

Similarly, we can obtain the following result:

E
[
∂2

∂µ2 log L(µ, σ)
]
= −E

( ∂∂µ log L(µ, σ)
)2 .

The result (2.11) can be proved through direct integrations. The expectation of the partial derivative
of the log-likelihood function is given by

E
(
∂

∂µ
log L(µ, σ)

)
= E

XU(k) − µ
σ2 −

k∑
i=1

1
XU(i) − µ

 . (2.12)

Let y = (x − µ)2/(2σ2). Then, the expectations of the right-hand side in (2.12) are obtained as

E
(
XU(k) − µ

)
=

∫ ∞

µ

(
xU(k) − µ

)
fXU(k) (x)dx

=
σ
√

2
(k − 1)!

∫ ∞

0
yk− 1

2 e−ydy

= σ

(
k − 1

2

) √
2h(k) (2.13)

and

E
(

1
XU(i) − µ

)
=

∫ ∞

µ

1
xU(i) − µ

fXU(i) (x)dx

=
1

σ
√

2Γ(i)

∫ ∞

0
yi− 3

2 e−ydy

=
h(i)

σ
√

2
,

where

h(i) =
Γ(i − 1/2)
Γ(i)

.

Therefore, the expectation of the partial derivative of the log-likelihood function is

E
(
∂

∂µ
log L(µ, σ)

)
= 0
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by the relationship
n∑

j=1

Γ( j − 1/2)
Γ( j)

=
2Γ(n + 1/2)
Γ(n)

.

By Remark 2, the Fisher information matrix for (µ, σ) is can be written in terms of the second
derivative of the log-likelihood function as

I(µ, σ) = −


E

(
∂2

∂µ2 log L(µ, σ)
)

E
(
∂2

∂µ∂σ
log L(µ, σ)

)
E

(
∂2

∂σ∂µ
log L(µ, σ)

)
E

(
∂2

∂σ2 log L(µ, σ)
)

 , (2.14)

where

− ∂2

∂µ2 log L(µ, σ) =
1
σ2 +

k∑
i=2

1(
xU(i) − µ

)2 ,

− ∂2

∂µ∂σ
log L(µ, σ) = − ∂2

∂σ∂µ
log L(µ, σ) =

2
(
xU(k) − µ

)
σ3 ,

− ∂2

∂σ2 log L(µ, σ) =
3
(
xU(k) − µ

)2

σ4 − 2k
σ2 .

Then, the Fisher information (2.14) is obtained as

I(µ, σ) =
1
σ2


1 +

1
2

k∑
i=2

1
i − 1

2
√

2
(
k − 1

2

)
h(k)

2
√

2
(
k − 1

2

)
h(k) 4k

 (2.15)

from the expectations (2.13) and

E
[(

XU(k) − µ
)2
]
=

∫ ∞

µ

(
xU(k) − µ

)2 fXU(k) (x)dx

=
2σ2

Γ(k)

∫ ∞

0
yke−ydy

= 2kσ2,

E

 1(
XU(i) − µ

)2

 = ∫ ∞

µ

1(
XU(i) − µ

)2 fXU(i) (x)dx

=
1

2σ2Γ(i)

∫ ∞

0
yi−2e−ydy

=
1

2(i − 1)σ2

for i > 1. Finally, by using the relationship

ψ(n + 1) = −C +
n∑

j=1

1
j
,
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the Fisher information matrix (2.15) is given by

I(µ, σ) =
1
σ2


1 +

1
2

(ψ(k) + C) 2
√

2
(
k − 1

2

)
h(k)

2
√

2
(
k − 1

2

)
h(k) 4k

 , (2.16)

where ψ(·) is the digamma function and C is Euler’s constant. Based on the Fisher information matrix
(2.16) and the asymptotic normality of the maximum likelihood estimator (MLE), we can obtain the
approximate 100(1 − α)% CIs based on the MLEs µ̂ and σ̂, which maximize the likelihood function
(2.10) for µ and σ as (

µ̂ − Z α
2

√
Var (µ̂), µ̂ + Z α

2

√
Var (µ̂)

)
and (

σ̂ − Z α
2

√
Var (σ̂), σ̂ + Z α

2

√
Var (σ̂)

)
, (2.17)

where Zα/2 denotes the upper α/2 point of the standard normal distribution and Var (µ̂) and Var (σ̂) are
the diagonal elements of the asymptotic variance-covariance matrix of the MLEs obtained by inverting
the Fisher information matrix (2.16). The approximate CIs (2.17) can have a negative lower bound
even though the support of σ is positive; however, the proposed Bayesian method in the subsequent
subsections can overcome this limitation.

Based on the Fisher information (2.16), we provide the objective priors (the Jeffreys and reference
priors and the second-order PMP) here.

The Jeffreys prior is proportional to the square root of the determinant of the Fisher information.
Therefore, the Jeffreys prior for (µ, σ) is given by

πJ(µ, σ) ∝

√
4
σ4

{
k
(
1 +

1
2

(ψ(k) + C)
)
− 2 [(k − 1)h(k)]2

}
∝ 1
σ2 . (2.18)

Note that the Jeffreys prior may lead to some undesirable frequentist properties in the presence of
nuisance parameters (Bernardo and Smith, 1994). The following theorem provides a reference prior
for (µ, σ) and examines the frequentist properties of the provided priors by observing if they satisfy
the second PMP criteria.

Theorem 1. The reference prior for (µ, σ) is

πR(µ, σ) ∝ 1
σ
, (2.19)

regardless of the parameter that is of interest.

Proof: This is proved by using the algorithm provided by Berger and Bernardo (1989). We first give
a proof procedure when µ is the parameter of interest. Define the conditional reference prior for σ
given µ as

π(σ|µ) =
√

I22(µ, σ)

=
2
√

k
σ

,
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where Ii j is the (i, j) entry of the Fisher information (2.16). Choose a sequence of compact sets
Ωi = (d1i, d2i) × (d3i, d4i) for (µ, σ) such that d1i, d3i → 0, d2i → xU(1), and d4i → ∞ as i→ ∞. Then,
the normalizing constant K1i(µ) is given by

K1i(µ) =
[∫ d4i

d3i

π(σ|µ) dσ
]−1

=
1

2
√

k(log d4i − log d3i)

and the following proper prior is obtained:

pi(σ|µ) = K1i(µ)π(σ|µ)1(d3i,d4i)(σ)

=
1

σ(log d4i − log d3i)
1(d3i,d4i)(σ),

where 1Ω denotes the indicator function on Ω. Therefore, when µ is the parameter of interest, the
marginal reference prior for µ and the reference prior (µ, σ) are respectively given by

πi(µ) = exp
[
1
2

∫ d4i

d3i

pi(σ|µ) log
(
|I(µ, σ)|
I22(µ, θ)

)
dσ

]
= exp

 1
2(log d4i − log d3i)

∫ d4i

d3i

1
σ

−2 logσ + log

1 + 1
2

(ψ(k) + C) − 2
k

((
k − 1

2

)
h(k)

)2 dσ


= exp

{
1
2

log
[
1 + (ψ(k) + C) /2 − 2 ((k − 1/2) h(k))2 /k

d4id3i

]}
∝ 1

and

πR1(µ, θ) = lim
i→∞

[
K1i(µ)πi(µ)

K1i(µ0)πi(µ0)

]
π(σ|µ)

∝ 1
σ
,

where µ0 is any fixed point.
When σ is the parameter of interest, a similar procedure is implemented.

π(µ|σ) =
√

I11(µ, σ)

=
1
σ

√
1 +

1
2

(ψ(k) + C).

From the above sequence of compact sets, it follows that

K2i(σ) =
[∫ d2i

d1i

π(µ|σ)dµ
]−1

=
σ

(d2i − d1i)
√

1 + (ψ(k) + C) /2
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and

pi(µ|σ) = K2i(σ)π(µ|σ)1(d1i,d2i)(µ)

=
1

d2i − d1i
1(d1i,d2i)(µ). (2.20)

Then, the marginal reference prior for σ is given by

πi(σ) = exp
[
1
2

∫ d2i

d1i

pi(µ|σ) log
(
|I(µ, σ)|
I11(µ, σ)

)
dµ

]
= exp

{
1

2(d2i − d1i)

∫ d2i

d1i

−2 logσ + log
[
4k − 8 ((k − 1/2) h(k))2

1 + (ψ(k) + C) /2

]
dµ

}
∝ 1
σ
,

and the reference prior for (σ, µ) is obtained as

πR2(σ, µ) = lim
i→∞

[
K2i(σ)πi(σ)

K2i(σ0)πi(σ0)

]
π(µ|σ)

∝ 1
σ
,

where σ0 is any fixed point. Note that the reference priors have the same form regardless of the pa-
rameters of interest. Therefore, the notation πR(µ, σ) is used for both reference priors. This completes
the proof. �

Theorem 2. The second-order PMP has the form of 1/σ. Therefore, the reference prior (2.19) is
the second-order PMP, while the Jeffreys prior (2.18) is not.

Proof: The formula for finding the second-order PMP for the multi-parameter case is provided in
Peers (1965). When µ is the parameter of interest, the second-order PMP should satisfy the following
partial differential equation:

∂

∂σ

[
I12(µ, σ)π(·)

I22(µ, σ)
√

M1

]
− ∂

∂µ

[
π(·)
√

M1

]
= 0, (2.21)

where π(·) is a joint prior distribution for (µ, σ) and

M1 = I11(µ, σ) −
[
I12(µ, σ)

]2

I22(µ, σ)
.

When σ is the parameter of interest, the partial differential equation (2.21) is modified as

∂

∂µ

[
I12(µ, σ)π(·)

I11(µ, σ)
√

M2

]
− ∂

∂σ

[
π(·)
√

M2

]
= 0, (2.22)

where

M2 = I22(µ, σ) −
[
I12(µ, σ)

]2

I11(µ, σ)
.
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Since the Fisher information (2.16) does not depend on µ, both partial differential equations (2.21)
and (2.22) are reduced as

∂

∂σ
[σπ(·)] = 0.

Therefore, the prior distribution π(·) should have the form of 1/σ. This completes the proof. �

Remark 3. The reference prior (2.19) is the same as the reference prior with partial information
provided in Seo and Kim (2017).

The following subsection investigates the property of posteriors under the proposed priors.

3. Properties of the posterior distribution

The posterior distribution under the Jeffreys prior (2.18) is

πJ(µ, σ|x) =
L(µ, σ)πJ(µ, σ)∫

µ

∫
σ

L(µ, σ)πJ(µ, σ) dσdµ

= c−1
1 σ−2k−2 exp

− (
xU(k) − µ

)2

2σ2

 k∏
i=1

(xU(i) − µ), (3.1)

where c1 is the normalizing constant, given by

c1 =

∫ xU(1)

0

∫ ∞

0
σ−2k−2 exp

− (
xU(k) − µ

)2

2σ2

 k∏
i=1

(xU(i) − µ) dσdµ. (3.2)

By Remark 2, the resulting posterior is the same as that of Seo and Kim (2017). For comparison, we
re-write the results with those based on the reference prior (2.19)

πR(µ, σ|x) =
L(µ, σ)πR(µ, σ)∫

µ

∫
σ

L(µ, σ)πR(µ, σ) dσdµ

= c−1
2 σ−2k−1 exp

− (
xU(k) − µ

)2

2σ2

 k∏
i=1

(xU(i) − µ), (3.3)

where

c2 =

∫ xU(1)

0

∫ ∞

0
σ−2k−1 exp

− (
xU(k) − µ

)2

2σ2

 k∏
i=1

(xU(i) − µ) dσdµ. (3.4)

Seo and Kim (2017) proved that the posterior distribution (3.3) is proper by showing that the normal-
izing constant (3.4) is integrable for µ and σ. In the same way, we prove that the posterior distribution
(3.1) is proper.

By integrating out σ from the normalizing constant (3.2), we have

c1 = 2k− 1
2 Γ

(
k +

1
2

) ∫ xU(1)

0

1(
xU(k) − µ

)2k+1

k∏
i=1

(xU(i) − µ) dµ.
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In addition, because the inequality

k∏
i=1

(xU(i) − µ) ≤ (
xU(k) − µ

)k

holds, we can obtain the following result:∫ xU(1)

0

1(
xU(k) − µ

)2k+1

k∏
i=1

(xU(i) − µ) dµ ≤
∫ xU(1)

0

(
xU(k) − µ

)k(
xU(k) − µ

)2k+1 dµ

=
1
2k

[(
xU(k) − xU(1)

)−2k − x−2k
U(k)

]
< ∞.

Therefore, the posterior distribution (3.1) is proper.

Theorem 3. The marginal posterior distributions for µ under the Jeffreys prior (2.18) and the refer-
ence prior (2.19) are

πJ(µ|x) =
∫
σ

πJ(µ, σ|x) dσ

=
2k− 1

2 Γ
(
k + 1

2

)
c1

(
xU(k) − µ

)2k+1

k∏
i=1

(xU(i) − µ) (3.5)

and

πR(µ|x) =
∫
σ

πR(µ, σ|x) dσ

=
2k−1Γ(k)

c2
(
xU(k) − µ

)2k

k∏
i=1

(xU(i) − µ), (3.6)

respectively.

However, a Markov chain Monte Carlo (MCMC) technique should be applied to generate the MCMC
samples from the marginal posterior distributions since marginal posterior distributions (3.5) and (3.6)
cannot be reduced analytically to any well-known distribution. Seo and Kim (2017) considered the
uniform distribution on (0, xU(1)) as a proposed distribution in the Metropolis-Hastings algorithm and
obtained satisfactory results. The Metropolis-Hastings algorithm is applied to generate MCMC sam-
ples µi (i = 1, . . . ,N) from the marginal posterior distributions (3.5) and (3.6).

Theorem 4. The marginal posterior distributions for σ under the Jeffreys prior (2.18) and the ref-
erence prior (2.19) are, respectively,

πJ(σ|x) =
∫
µ

πJ(σ|µ, x)πJ(µ|x) dµ

and

πR(σ|x) =
∫
µ

πR(σ|µ, x)πR(µ|x) dµ,
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where the corresponding conditional posterior density functions are given by

πJ(σ|µ, x) =
(
xU(k) − µ

)2k+1

2k− 1
2 Γ

(
k + 1

2

) σ−2k−2 exp

− (
xU(k) − µ

)2

2σ2

 , (3.7)

πR(σ|µ, x) =
(
xU(k) − µ

)2k

2k−1Γ (k)
σ−2k−1 exp

− (
xU(k) − µ

)2

2σ2

 . (3.8)

Remark 4. The conditional posterior density function (3.7) is the PDF of the square root inverse
gamma distribution with the scale parameter k + 1/2 and the shape parameter (xU(k) − µ)2, and the
conditional posterior density function (3.8) is the PDF of the square root inverse gamma distribution
with the scale parameter k and the shape parameter (xU(k) − µ)2.

By Remark 3, the MCMC samples σi (i = 1, . . . ,N) can be generated from the corresponding
square root inverse gamma distribution as soon as the MCMC samples µi (i = 1, . . . ,N) are generated
from the marginal posterior distribution for µ. Then, the Bayes estimators of µ and σ under the
squared error loss function (SELF) are obtained respectively as

µ̂B =
1

N − M

N∑
i=M+1

µi

and

σ̂B =
1

N − M

N∑
i=M+1

σi,

where M is the number of burn-in samples. The subscript B under the Jeffreys prior (2.18) and the
reference prior (2.19) is substituted by JB and RB, respectively. The highest posterior density (HPD)
credible intervals (CrIs) for µ and σ are constructed by the method provided in Chen and Shao (1998).

4. Application

This section assesses how the proposed analysis method is valid through Monte Carlo simulations and
real data analysis.

4.1. Simulation study

This subsection reports the mean squared errors (MSE) and biases of the proposed estimators, and the
coverage probabilities (CPs) and average lengths (ALs) for the proposed intervals at the 0.95 level to
assess their validity. The upper record values are generated from two-parameter Rayleigh distribution
with µ = 0.5 and σ = 1 for different k = 5(2)15. All results based on 1,000 simulations are displayed
in Figures 1 and 2.

From Figures 1 and 2, we can see that the Bayes estimators under the reference prior (2.19) show
the best performance in terms of the MSE and bias. In addition, the HPD CrIs under the reference prior
(2.19) are well matched to their corresponding nominal levels. The HPD CrIs under the Jeffreys prior
(2.18) and the approximate CIs based on the MLEs have lower CPs than the corresponding nominal
levels, but the CPs approach the nominal levels as the size k increases. For ALs, the HPD CrIs under
the proposed priors (2.18) and (2.19) have smaller ALs than approximate CIs based on the MLEs
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Figure 1: Simulation results for µ.

do, and the ALs of the HPD CrIs under the two priors have little difference. The results indicate
that the proposed objective Bayesian method is superior to the corresponding maximum likelihood
counterpart in terms of frequentist properties.

4.2. Real data

In this subsection, we analyze a real data set that represents survival times in days for a group of lung
cancer patients, as provided in Lawless (1982):

6.96, 9.30, 6.96, 7.24, 9.30, 4.90, 8.42, 6.05, 10.18, 6.82, 8.58, 7.77, 11.94, 11.25, 12.94, 12.94.

We can observe the following upper record values:

6.96, 9.30, 10.18, 11.94, 12.94,

which have been analyzed by some authors. Soliman and Al-Aboud (2008) showed that the Rayleigh
distribution with the scale parameter fits in the analysis of the observed record data. Seo and Kim
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Figure 2: Simulation results for σ.

(2017) applied an objective Bayesian method under the reference prior with partial information to
the observed record data and showed that the proposed Bayesian model fits the observed record data
well. We focus on comparing the Bayesian models under the Jeffreys prior (2.18) and reference prior
(2.19) here. Tables 1 and 2 report numerical results and posterior probabilities (PPs) of the HPD CrIs
as well as estimation results of unknown parameters based on the observed upper record values. As
mentioned in Remark 2, the reference prior (2.19) has the same form as the reference prior with partial
information provided in Seo and Kim (2017), and it has been proved in their study that the Markov
chains under the provided prior mix well and converge to the stationary distribution very quickly.
Therefore, we do not report the results for the validity of the generated MCMC samples.

Tables 1 and 2 show that the Bayes estimates based on the generated MCMC samples and the
numerical results are very close to each other. In addition, the 95% HPD CrIs satisfy their PPs well. It
is worth noting that the lower bound of the approximate 95% CI based on the MLE σ̂ has a negative
value in Table 2, although the support of σ is positive. This result can be sufficient because the
approximate CI for σ is obtained by the asymptotic normality of the MLE. Therefore, it is natural to
choose the Bayesian inference.
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Table 1: Estimates and the corresponding 95% CIs and HPD CrIs for µ

µ̂ µ̂JB µ̂RB
Estimate 5.205 Numerical 4.196 3.867

MCMC 4.205 3.863
CI (−7.651, 18.062) HPD CrI (0.906, 6.872) (0.514, 6.684)

PP 0.949 0.951

CI = confidence interval; HPD = highest posterior density; CrIs = credible intervals; MCMC =Markov chain Monte Carlo;
PP = posterior probability; JB = Jeffreys prior; RB = reference prior.

Table 2: Estimates and the corresponding 95% CIs and HPD CrIs for σ

σ̂ σ̂JB σ̂RB
Estimate 2.446 Numerical 2.835 3.109

MCMC 2.831 3.113
CI (−1.662, 6.554) HPD CrI (1.451, 4.584) (1.663, 5.409)

PP 0.949 0.951

CI = confidence interval; HPD = highest posterior density; CrIs = credible intervals; MCMC =Markov chain Monte Carlo;
PP = posterior probability; JB = Jeffreys prior; RB = reference prior.

Table 3: Replications of the observed upper record values under the provided priors

i 1 2 3 4 5
πJ(µ, σ) 7.75 9.52 10.85 11.96 12.93
πR(µ, σ) 7.76 9.71 11.17 12.39 13.46

The quality of models under the derived priors can be evaluated through posterior predictive
checking. The data drawn from the fitted model, namely replications, should look similar to ob-
served data if the model is adequate. Let Xrep be a replication from a fitted model. Then, the Bayesian
predictive density function of Xrep under a prior distribution π(θ) is given by

fXrep
(
xrep|x) = ∫

θ

fXrep
(
xrep|θ) π(θ|x)dθ, (4.1)

where fXrep (xrep) is the marginal density function of Xrep. Let Xrep ≡ Xrep
U(i) be the replication from

the model under the Jeffreys prior (2.18). Then, the MCMC sample Xrep( j)
U(i) is obtained from the

marginal density function fXrep
U(i)

(xrep
U(i)), with µ j and σ j generated from the joint posterior distribution

(3.1). Therefore, the replications of the observed upper record values are given by

Xrep
U(i) =

1
N − M

N∑
j=M+1

Xrep( j)
U(i) , i = 1, . . . , k.

The replications from the model under the reference prior (2.19) can be obtained similarly. These
replications are reported in Table 3. As is conducted in Seo and Kim (2017), we evaluate the Bayesian
models through four discrepancy statistics:

D1 = Xrep
U(1),

D2 = Xrep
U(5),

D3 = Mean
(
Xrep

U(i)

)
,

D4 = SD
(
Xrep

U(i)

)
, i = 1, . . . , k.
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Figure 3: (a) Histogram and kernel density of D1 under the Jeffreys prior (2.18) and (b) Histogram and kernel
density of D1 under the reference prior (2.19).
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Figure 4: (a) Histogram and kernel density of D2 under the Jeffreys prior (2.18) and (b) Histogram and kernel
density of D2 under the reference prior (2.19).

Under the provided priors (2.18) and (2.19), we present the histograms and kernel densities of the
discrepancy statistics in Figures 3–6.

Table 3 shows that the replications under the Jeffreys prior (2.18) are closer to the observed upper
record values than the replications under the reference prior (2.19) are. Figures 3–6 show little dif-
ference between the models under the priors (2.18) and (2.19) for D1. In addition, the model under
the Jeffreys prior (2.18) shows better performance than that under the reference prior (2.19) for D2.
In contrast, the model under the reference prior (2.19) shows better performance than that under the
Jeffreys prior (2.18) for D3 and D4. However, their differences are not significant.
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Figure 5: (a) Histogram and kernel density of D3 under the Jeffreys prior (2.18) and (b) Histogram and kernel
density of D3 under the reference prior (2.19).
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Figure 6: (a) Histogram and kernel density of D4 under the Jeffreys prior (2.18) and (b) Histogram and kernel
density of D4 under the reference prior (2.19).

5. Conclusions

This paper provides an objective Bayesian analysis method based on the objective priors (the Jef-
freys and reference priors, and the second-order PMP) for unknown parameters of the two-parameter
Rayleigh distribution when the upper record values are observed. To obtain the objective priors, we
derived the Fisher information matrix for unknown parameters in terms of the second derivative of
the log-likelihood function using Leibniz’s rule. In the simulation study, we showed that the model
under the reference prior (2.19) is superior to that under the Jeffreys prior (2.18) and the correspond-
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ing maximum likelihood counterpart in terms of frequentist properties. In addition, we showed the
limitation of the approximate CI based on the MLE through real data analysis. Based on these results,
we recommend the objective Bayesian method under the reference prior (2.19) in the absence of prior
information.
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