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Abstract. In this paper, we derive exact explicit expressions for the
triple and quadruple moments of the lower record values from inverse
the Weibull (IW) distribution. Next, we present and calculate the co-
efficients of the best linear unbiased estimates of the location and scale
parameters of IW distribution (BLUEs) for different choices of the shape
parameter and records size. We then use the higher order moments and
the calculated BLUEs to compute the mean, variance, and the coeffi-
cients of skewness and kurtosis of certain linear functions of lower record
values. By using the coefficients of the skewness and kurtosis, we develop
approximate confidence intervals for the location and scale parameters of
the IW distribution using Edgeworth approximate values and then com-
pare them with the corresponding intervals constructed through Monte
Carlo simulations. Finally, we apply the findings of the paper to some
simulated data.
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Record values arise naturally in many real life applications involving data
relating to weather, sport, economics and life testing studies. Many authors have
studied record values and the associated statistics; see, for example, Chandler (1952),
Nevzorov (1988), Nagaraja (1988), Ahsanullah (1980, 1988, 1990, 1995) and Arnold,
Balakrishnan and Nagaraja (1992, 1998). Balakrishnan, Ahsanullah and Chan
(1992) have established some recurrence relations for the moments of record values
from the Gumbel distribution. Similar work has been carried out by Balakrishnan,
Chan and Ahsanullah (1993) and Balakrishnan and Ahsanullah (1994a, 1994b, 1995)
for the generalized extreme value, generalized Pareto, Lomax and exponential dis-
tributions, respectively. Ahsanullah (1980, 1990), Balakrishnan and Chan (1993),
and Balakrishnan, Ahsanullah and Chan (1995) have also discussed some inferen-
tial methods based on record values from exponential, Gumbel, Weibull and logistic
distributions, respectively. Sultan and Balakrishnan (1999) and Sultan and Moshref
(2000) have discussed inferential techniques based on Weibull and generalized Pareto
distributions, respectively.

Let X1y, Xr(2), - - » X1(n) be the first n lower record values from the IW density
function (pdf)

f(z) = cx ¢ e ¢>0, >0, (1.1)
and cumulative distribution function (cdf)
Fz)=e* , z2>0. (1.2)

(From (1.1) and (1.2), it is easy to see that

f@) = S{-log F(2)}F(a). (1.3)

The location-scale IW distribution has its density function given by

c(_2 )" A 9>0 1.4
) =2 (-55)  ewl-Tph vz 0050020 (19)

Drapella (1993) calls the IW distribution as the complementary Weibull distribu-
tion, while Mudholker and Kollia (1994) call it the reciprocal Weibull distribution.
Jiag, Murthy and Ji (2001) have discussed some useful measures for the IW distribu-
tion. Nigm and Khalil (2006) used the relation in (1.3) to establish some recurrence
relations for the single and the product moments of lower record values from IW
distribution in (1.1).

The IW distribution plays an important role in many applications, including
the dynamic components of diesel engines and several data set such as the times
to breakdown of an insulating fluid subject to the action of a constant tension;
see Nelson (1982). Calabria and Pulcini (1990) provide an interpretation of the
IW distribution in the context of the load-strength relationship for a component.
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Recently, Maswadah (2003) has the fitted IW distribution to the flood data reported
from Dumonceaux and Antle (1973). For more details on the IW distribution see
for example Johnson, Kotz and Balakrishnan (1995) and Murthy, Xie and Jiang,
(2004).

In the following section, we derive the exact explicit expressions of the triple and
quadruple moments of record values from the IW distribution. The higher order
moments are then used together with the BLUEs in Section 3 to determine the co-
efficients of skewness and kurtosis of some pivotal quantities which depend on liner
functions of lower records values from the IW. We then propose Edgeworth approx-
imations for the distributions of these pivotal quantities and show that this method
provides close approximations to the percentage points of the pivotal quantities de-
termined by Monte Carlo simulations.Finally, examples to illustrate the methods of
inference developed in this paper are discussed in Section 4.

2. HIGHER ORDER MOMENTS

In this section, we derive exact expressions for the triple and quadruple moments
of the lower record values from the IW distribution in (1.1).

The joint density function of the first n lower record values X1y, X2}, -+, Xr(n)
is given by [Arnold, Balakrishnan and Nagaraja (1998)]

J12,.2(TLa) Ly - Trm)) = F(Tr(m)) nff M (2.1)
e w1 Flzre)

(From (2.1), the pdf of X ) can be obtained as

fmlz) = F(—lm5 CloglF(@)))™ ! f() 220, m=1,2,...,
(2.2)

where f(.) and F(.) are given in (1.1) and (1.2), respectively.
The the joint pdf of Xp(m) and X, is given by

Frnle,) = Frme—s (~loelPE]} ™ (- loglF(v)]

1)

+ loglF(@)]}"

fWo<y<z<oo, mn=12,...,m<mn,
(2.3)

where f(.) and F(.) are given in (1.1) and (1.2), respectively.
By using (2.2) and (2.3) Nigm and Khalil (2006) have derived the single and

double moments as

@ _ Lim - Y)

Moy Tlm) i < me, (2.4)
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and

P(m—HP(n-=0)
(1, )-_— c _c < 2.5

where I'(+) is the gamma function. Then they used the single and double moments
of the lower record values to compute the BLUEs when n = 5.

2.1 Triple moments

From (2.1), the joint pdf of Xp(m), Xrm) and Xy, (M < n < p), is obtained
to be

1 -
Tom)Tn —m)Tp =)\ 08lF @} Y{= log[F(y)]

log[F(2)]}"~™" {~ log[F ()] + log[F ()]}’ "~
f=z) f(y)
F(z) F(y)

fmnp(T,y, 2)

-+

f(z), —o<z<y<z<oo, mn=12,....m<n<p,
(2.6)

where f(.) and F(.) are as given in (1.1) and (1.2), respectively.

(From (2.6), we derive the triple moments of the m-th, n-th and p-th lower
record values form IW distribution as
I'(m — H)l(n ~ HE)(p — L)

T(m)[(n — $)I'(p — 1)
i+Jj+k <pc (2.7)

SR = BX L my XL X L) =

b

The required triple moments of record values to develop the Edgeworth approxima-

tion are usrll’:,’;,), pﬁ,{’kf), ug,%;,) and u,(ﬁ:}{j,), where uﬁ,ﬂn ,2 is given by (2.7).

2.2 Quadruple moments

From (2.1), the joint pdf of X (m), Xr(n)» Xi(p) and Xp(q), (M <n<p<gq),is
given by

fmnpa(@ Y, z,w) = T(m)[(n — TTL)I}(;D —n)(qg—-p) {- log[F(z)]}m—l
{~log[F (y)] +log[F (z)]}" ™™~ {~ log[F (2)]
log[F (y)]}P~"~{~ log[F(w)] + log[F ()]}~
(=) fly) f2) (w)

F(z) F(y) F(z)" "7

+ X
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where —co<w<2<y<z<oo, mnpq=12..,m<n<p<gq,and f(.)
and F(.) are as given in (1.1) and (1.2), respectively.

From (2.8), we derive the quadruple moment generating function of the m-th,
n-th, p-th and g¢-th lower record values as

.1 .1kyl — ) j k {
uEnby = BXimXLmXEmXL@)
I(m — L)0(n — Bd)(p — Hith)p(q — LRItk

c

[(m)[(n - $D(p— BL)I(q - Hitk) 7

C

(2.9)

where i +j+ k+ 1 < gc.
The required quadruple moment of lower record values to develop the Edgeworth

oo (LLLI gkd) o .
approximation is ugnjn’,p,q),where u&,’n,p}, is given by (2.9).

3. INFERENCE

In this section, we use the single and double moments of record values derived
by Nigm and Khalil (2006) to calculate the coefficient of BLUEs for records of
size 4,5,6 and 7. Then we use these BLUEs together with our new forms of the
triple and quadruple moments of the lower record values to develop Edgeworth
approximate inference for the location and scale parameters of IW distribution. In
addition, we compare the confidence intervals based on Edgeworth approximation
to the corresponding intervals constructed using Monte Carlo simulation.

3.1 BLUE’s of § and ¢

Let Yraq) = Yre = ... = Yi(n) be the lower record values from the IW
distribution given in (1.4), and let Xy = (YL(,') - 0) /o, ¢ = 1,...,n, be the
corresponding lower record values from the one parameter the IW distribution given
n (1.1). Let us denote E(X ;) by wi, Var(Xp)) by 04, and Cov(X .y, X1(;)) by
oi ;. Further, let

Y = (YL(I)a Yoy, ’YL(n))T

po= (w1, n)T
1 = (1,1,...,1)7
N’
n
and ¥ = ((04y)),1<4, j<n

Then, the BLUEs of # and o are given by [see Balakrishnan and Cohen (1991)]

Ty —1 Tesr—1 Tyv—1 Tyr—-1 n
pTe 11Ty~ _ ) Te-11, Ty }

0*2{ TS —1 — — Y=E AiYL(), (31)
(WTE ) ATE 1) - (WTET)2 7 T T
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and
% ITZ_llyTZ"l -1Tx-141Ty1 n
o {(HTE‘lu)(lTE-ll) —rpE | Y T 2 B (3.2)

i=1

Furthermore, the variances and covariance of these BLUEs are given by [see Balakr-
ishnan and Cohen (1991)]

Ty -1
5y _ 2 pE _ 2
Verlt')=o {(MTE‘IM)(lTE‘ll) = (uTz—11>2} o 69)
1Tx-11
*\ _ 2 _ .2
Var(c*) =0 {(uTE‘lu)(lTE‘ll) — (NTE‘11)2} = o°Vs, (3.4)
and
Ts-1
x ¥y _ 2 —u X1 — 2
Cov(f*,0")=0 {(MTE_IM)(ITE_II) — (uTE—ll)z} = o“V3. (3.5)

Table 3.1 The Coefficients of the BLUESs
c=3 c=4 c=35

n A; B; A; B; A; B;

4 1-0.2353 0.3519 | -0.5294 0.7182 | -0.8421 1.0764
-1.4118 2.1112 | -1.7647 2.3939 | -2.1053 2.6909
-2.1176 3.1668 | -2.3529 3.1919 | -2.6316 3.3636
4.7647 -5.6299 | 5.6471 -6.3040 | 6.5789 -7.1309
51-0.1400 0.2284 | -0.3383 0.4896 | -0.5591 0.7523
-0.8400 1.3704 | -1.1278 1.6319 [ -1.3978 1.8807
-1.2600 2.0555 | -1.5038 2.1759 | -1.7473 2.3509
-1.6200 2.6428 | -1.8045 2.6111 | -2.0161 2.7126
4.8600 -6.2972 | 5.7744 -6.9085 | 6.7204 -7.6966
6 | -0.0942 0.1647 | -0.2395 0.3649 | -0.4071 0.5706
-0.5653 0.9881 | -0.7985 1.2162 | -1.0178 1.4265
-0.8479 1.4821 | -1.0646 1.6216 | -1.2723 1.7831
-1.0902 1.9055 | -1.2776 1.9459 | -1.4680 2.0575
-1.3082 2.2866 | -1.4601 2.2239 | -1.6311 2.2861
4.9058 -6.8270 | 5.8403 -7.3725 | 6.7964 -8.1238
7 | -0.0684 0.1266 | -0.1809 0.2875 | -0.3143 0.4556
-0.4104 0.7595 | -0.6029 0.9582 | -0.7857 1.1391
-0.6156 1.1393 | -0.8038 1.2776 | -0.9821 1.4239
-0.7915 1.4648 | -0.9646 1.5331 | -1.1332 1.6429
-0.9498 1.7578 | -1.1024 1.7521 | -1.2591 1.8255
-1.0959 2.0282 | -1.2249 1.9468 | -1.3686 1.9842
4.9316 -7.2763 | 5.8794 -7.7552 | 6.8429 -8.4712
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Table 3.2 The variances and covariances of the BLUEs

c n Var(0*) Var(c*) Couv(6* %)
3 4 0.3152 0.6834 -0.4713
3 5 0.1875 0.4901 -0.3059
3 6 0.1262 0.3803 -0.2206
3 7 0.0916 03103 -0.1696
4 4 03128 0.5646 -0.4243
4 5 01999 04138 -0.2893
4 6 01415 0.3255 -0.2156
4 7 01069 0.2680 -0.1698
5 4 03135 0.5055 -0.4007
5 &5 0.2082 0.3739 -0.2801
5 6 0.1516 0.2960 -0.2124
5 7 01170 0.2447 -0.1696

For details, refer to Balakrishnan and Cohen (1991), and Arnold, Balakrishnan
and Nagaraja (1992).

Table 3.1 represents the coefficients of the BLUEs A; and B; for records of sizes
4, 5, 6, 7 and the shape parameter ¢ =3,4 and 5. As a check, the entries of Table
3.1 stratify the identities

1

n
ZA;‘ =1 and ZBZ‘=0.

i=1 i=1
The variance and covariances of the BLUEs given in Table 3.2 have been calculated
by setting o = 1.

3.2 Edgeworth Approximate Inference

In this section, we use the higher moments of record values derived in Section 2
to develop confidence intervals for the location and scale parameters § and o of the
IW distribution based on the following pivotal quantities:

*—-4d g~
Rl M;‘W R 0‘\[— and Rg-—- —:m, (36)

where 6* and o* are the BLUEs of # and o with variances 6%V} and 02Vj, respectively.
K can be used to draw inferences on & when ¢ is known, while R3 can be used to
raw inference on @ when ¢ is unknown. Similarly, Rz can be used to draw inference
for o when # is unknown.
Notice that Ry and Rz in (3.6) can be rewritten as

R3 R —
(ZA X ) = 7 —\/-1= (ZB Xpg — ) \2/‘7;1 (3.7)
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where Xy = (Y5 —0)/0, t=1,2,...,n

Thus, they are linear functions of record values arising from the one parameter
IW distribution in (1.1). Since the distribution of a linear function of record values
will in general not be known, we consider finding the approximate distribution by
using Edgeworth approximation for a statistic 7' (with mean 0 and variance 1) given
by [see Johnson, Kotz and Balakrishnan (1994)]

G(t) =~ ®(t) — ¢(t) {-—-«‘/«g——‘-(t? -1)+ 5—22-;’-(5’ ~3t) + %(t5 - 1083 + 15t)} , (3.8)

where v/B; and 3, are the coefficients of skewness and kurtosis of T', respectively,
and ®(t) is the cdf of the standard normal distribution with corresponding pdf ¢(t).

By making use of the exact expressions of moments presented in Section 2, and
the BLUEs A; and B;, we determined the values of the mean, variance and the
coefficients of skewness and kurtosis (v/f#1 and ;) of R} and Rj, for n = 4(1)7 and
¢ = 5. Notice that Edgeworth approximate is valid only when ¢ > 4, that is because
of the conditions on the quadruple moments.

The coefficients of skewness and kurtosis of R] are given in Lemma 2.1.

Lemma 3.1

o L3—3LyL; —2L2
VBAi(R}) = T (3.9)
and
Ly —3L44+6LoL% —4L,L3
Ba(R7) = 1(1;2 — L%)lz , (3.10)
where
ki3
Ly = ER)= (ZA Z; ,,,) =3 Al (3.11)
=1
2
L, = ER)’=E (Z AiZi:n)
i=1
2 n—-1 n 1)
= ZA2”§:2+2Z Z A1A]u1]n) (3.12)

i=1 j=i+1

n 3
Ly = ER)’=E (Z AiZi:n)
z-—l
43, (9) 24,20
= Z “zn+32 Z A .?»u‘z,]n
i=1 i=1 j=i41
n n-2 n-—l1 n

+ 32 3 AA%?J‘MGZ Y aA ALY, (313)

i=1 j=i+l i=1 j=i+1 k=j+1
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and
n 4
Ly = ER)*=E (ZAiZi:n)
z’-—l
- 4) (3,1
= ZAdp’zn +4Z Z AsAJNz,jn
i=1 i=1 j=i+1
et (1.,3) (2,2)
+ 42 Z AA?#L? +6Z Z AAJ“an’
i=1 j=i+1 i=1 j=i+1
n—-2 n—1 n @1,1) n-2 n-1 n (1.2.1)
+ 120 D Y AR AR +12) 0 D D AAT A i
i=1 j=itl k=j+1 i=1 j=i+1 k=j+1
n-2 n-—1 n (11,2) n-3 n-2 n-1 (L1.11)
+ 1230 D N AAAR e 24 Y Y Z A A AR A K
=1 femibl k=gl i=] j=idl k=g I=k+1

(3.14)

The coefficients of skewness and kurtosis for Ry = 3., B;Z;;, can be obtained
following steps similar to those in R} and replacing A; by B;. Table 3.3 displays the
values of the mean, variance and the coefficients of skewness and kurtosis (/31 and
B2) of R} and Rj.

Table 3.3 Mean, variance and coefficients of skewness and
kurtosis of R} and R3 when c,  and ¢ are 5.0, 0.0 and 1.0
R} R
Mean | Vi | VB1 Bo | Mean | Vo | VB B2
.000 | .314 | -2.081 | 13.305 | 1.000 | .505 | 2.115 | 13.305
000 | .208 | -1.720 | 9.543 | 1.000 | .374 | 1.751 | 9.575
000 | .152 §-1.494 | 7.716 | 1.000 | .296 | 1.524 | 7.756
.000 | .117;-1.337 | 6.662 | 1.000 | .245 | 1.365 | 6.702

NI N TN

An examination of the (v/f1, B2) values in Table 3.3 reveals that the distribution of
R (and hence of Ry) is positively skewed, while the distribution of R} (and hence
of Ry) is negatively skewed. In addition, v/B; for R; increases as n decreases while
V1 for Ry decreases as n increases. Also, the coefficient of kurtosis B2 of both R}
and R} decrease as n increases. Further, f2 of both R} and R} are almost equal.
By making use of the entries in Table 3.3, we determined the lower and upper
1%, 2.5%, 5% and 10% points of R; and R» through the Edgeworth approximation
n (3.8). These values, for n = 4(1)7 and ¢ = 5 are presented in Tables 3.4 and
3.5. For the purpose of comparison, these percentage points were also determined
by Monte Carlo simulations (based on 10001 runs) and they are presented along
with the Edgeworth percentage points in Tables 3.4 and 3.5 when ¢ = 3,4,5. From
Tables 3.4 and 3.5, we see that the Edgeworth approximation of the distribution
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Table 3.4 [Edgeworth] Approximate values and simulated values of
percentage points of B; when 6 and o are 0.0 and 1.0

cln 1% 2.5% 5% 10% 90% 95% | 97.5% | 99%
34| -3.548 | -2.511 | -1.861 | -1.196 .862 .988 1.105 | 1.233
51 -3.537 | -2.489 | -1.803 | -1.174 929 1.070 | 1.189 1.309

6| -3.397 | -2.386 | -1.797 | -1.112 990 1.143 1.272 1.419

7| -3.243 | -2.341 | -1.714 | -1.109 1.053 1.209 1.338 1.485
44| -3479 | -2.592 | -1.842 | -1.261 .930 1.053 | 1.158 1.282
5| -3.275 | -2.461 | -1.832 | -1.213 997 1.143 1.261 1.409

6| -3.264 | -2.436 | -1.808 | -1.166 | 1.034 | 1.192 | 1.315 | 1.436

7| -3.167 | -2.277 | -1.710 | -1.147 | 1.099 | 1.268 | 1.388 | 1.539
5|4 [-3.421] | [-3.190] | [-2.762] | [-1.647] | [.871] | [.974] | [1.714] | [2.461]
-3.473 | -2.524 | -1.856 | -1.239 955 1.084 | 1.177 | 1.287

5| [-3.320] | [-3.060] | [-2.691] | [-.906]) | [.967] | [1.096] | [2.173] | [2.639]
-3.319 | -2410 | -1.830 | -1.238 1.010 1.156 1.284 1.403

6 | [-3.297] | [-3.041] | [-2.315] | [-.862] | [1.022] | [1.171] | [2.625] | [2.889]
-3.297 | -2.488 | -1.775 | -1.214 1.072 1.238 1.364 1.484

7| [-3.198] | [-2.951] | [-2.055] | [-.750] | [1.058] | [1.222] | [3.329] | [3.409]
-3.109 | -2.245 | -1.736 | -1.170 | 1.123 | 1.303 | 1.423 | 1.569

Table 3.5 [Edgeworth] Approximate values and (vimulated values) of
percentage points of Ry when 6 and ¢ are 0.0 and 1.0

c|n 1% 2.5% 5% 10% 90% 95% | 97.5% | 99%
34| -1.096 | -1.046 | -.985 -.897 | 1.291 | 1.857 | 2.652 | 3.779
5| -1.231 | -1.161 | -1.078 -.958 1.220 1.774 | 2.652 | 3.732

6| -1.354 | -1.270 | -1.177 | -1.045 1.175 1.625 | 2.629 | 3.546

7| -1.448 | -1.353 | -1.248 | -1.103 1.071 1.518 | 2.434 | 3.348
44| -1.192 | -1.127 | -1.056 -.953 1.296 1.881 2.648 | 3.703
5| -1.322 | -1.230 | -1.147 | -1.012 1.247 1.779 | 2.566 | 3.395

6| -1.424 | -1.324 | -1.220 } -1.065 1.203 1.740 | 2.532 | 3.272

7| -1.528 | -1.417 | -1.301 -1.140 1.182 1.676 2.345 3.247
5|4 |[-2.876] | [-[1.731] | [-.980] { [-.879] | [1.961] | [2.773] | [3.660] | [3.887]
-1.541 | -1.665 | -1.084 -.965 1.261 1904 | 2.570 | 3.547

5| [-2.652) | [F1.174] | [-1.008] | [-.972] | [1.317] | [2.699] | [3.251] | [3.728]
-1.503 | -1.471 | -1.167 | -1.027 | 1.258 1.866 | 2.501 3.445

6 | [-2.593] | [-1.161] | [-1.171] | [-1.025] | [1.169] | [2.318] | [3.101] | [3.607]
-1.373 | -1.372 | -1.263 | -1.098 1.206 1.811 | 2.423 | 3.362
7 | [-1.402) | [-1.324] | [-1.221] | [-1.059] | [1.154] | [2.052] | [2.962] | [3.509]
-1.278 | -1.247 | -1.332 | -1.158 1.187 1.760 | 2.301 3.172
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of Ry and Ry are in close agreement with the simulated percentage points in most
cases,

It should be mentioned here that, though the Edgeworth approximation has been
shown to be quite satisfactory for the choices of n and v considered here, it will be
necessary to check the validity of its use for any other choice of n and c; for details
concerning the validity of the Edgeworth approximation, one may refer to Johnson,
Kotz and Balakrishnan (1994, p.29).

In conclusion, we observe that the Edgeworth approximations of the distributions
of Ry and R, both work quite satisfactorily; this is also clear from the probability
coverages and the average width of the confidence intervals based on R; and Rj
which are presented in Tables 3.6 and 3.7, respectively.

Table 3.6 Probability coverages of C.1.’s based on R; and Ry using

Edgeworth percentage points when 6 and o are 0.0 and 1.0

Ry Ry R (using ¢ = o)
95% 90% | 95% 90% | 95% 90%
.8940 .8526 | .9452 .8487 | .8843 .6850
9421 9133 | .9514 .9053 | .7421 7276
9217 9012 | 9358 .8927 ! .7759 7345
9445 8969 | 9345 .8864 | .7534 7321

BN I = IS I N

Table 3.7 Average width of the simulated and [Edgeworth] C.I.’s
based on R; and Ry when § = 0.0 and 0 = 1.0

Ry Rs Ry (using 0 = o™)
(Simulated) (Simulated) (simulated using R3)

cln| 95% 90% 95% 90% 95% 90%
3|4 1.5643 2.030 4.974 7.065 | 3.153 4.430
51 1.244 1592 3.624 4.967 | 2.106 2.867

6 1.080 1.370 3.123 4.151 1.680 2.266

71 0.885 1.114 2.642 3.443 | 1.350 1.751
4141 1619 2098 4.389 6.142 | 3.192 4.438
51 1330 1.664 | 2298 4328 | 2.209 2.914

6] 1.166 1449 | 2.772 3633 | 1.754 2.301

71 0974 1.198 2.412 3.132 | 1.454 1.896
5|4 | [1.531] [2.186] | [2.865] [1.614] | [1.536]  [2.192]
1.646 2.072 3.548 5.484 | 3.071 4.233

5 [1.428] [2.023] | [2.660] [3.532] | [1.724] [2.017}
1.363  1.686 2.016 4.081 | 2.211 2.936

6 | [1.357) [1.932] | [2.262) [2.754] | [1.327]  [2.003]
1212 1.500 | 2.848  3.445 | 1.855 2.372

71 [1.121] [1.464] | [1.928] [2.372] | [1.066] [1.392]
1.040 1.255 | 2.279  2.898 | 1.517 1.953
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It should also be pointed out here that a similar Edgeworth approximation can
not be developed for the percentage points of the pivotal quantity R3 since it is not
a linear function of record values. However, as displayed in Tables 3.6 and 3.7, we
do not recommend drawing approximate inference based on R; with ¢ replaced by
o* since it does not provide close results to those based on Rs. For this purpose,
we have presented in Table 3.8 some selected percentage points of R3 determined
by Monte Carlo simulations (based on 10001 runs).

Table 3.8 Simulated percentage points of
R3 when 6 and ¢ are 0.0 and 1.0

c |n| 1% 25% | 5% | 10% | 90% | 95% | 97.5% | 99%
304 -89 | -804 |-712 | -.589 | 3.193 | 4.925 | 7.116 | 10.882
5] -.997 | -.899 | -.792 [ -.642 | 2.742 | 4.092 | 5.752 | 8.283
6 |-1.087 | -.987 |-.868 |-.697 | 2.742 | 3.965 | 5.530 | 7.620
7 |-1.142 | -1.007 | -.877 | -.698 | 2.645 | 3.827 | 5.096 | 6.869
404 -956 | -.868 |-.771 | -.625 | 3.245 | 4.985 | 7.134 | 10.385
5 |-1.051 | -951 | -839 |-.682 | 2.846 | 4.192 | 5.688 | 8.401
6 |-1.148 | -1.034 | -.911 | -.738 | 2.592 | 3.822 | 5.175 | 7.104
71-1.183 | -1.044 | -911 | -.742 | 2.521 | 3.777 | 5.067 | 7.037
50 (4] -997 | -901 | -795 ] -.661 | 3.044 | 4.675 | 6.640 | 9.937
5|-1.087 | -974 | -860|-.704 | 2.674 | 3.997 | 5478 | 8.165
6 |-1.172 | -1.054 | -.925 | -.750 | 2.631 | 3.945 | 5.174 | 7.121
7 |-1.217 | -1.065 | -.934 | -.762 | 2.586 | 3.729 | 4.940 | 6.824

4. NUMERICAL ILLUSTRATIONS

In order to illustrate the usefulness of the inference procedures discussed in the
previous sections, we consider here simulated data sets of size n = 4, 5,6 and 7 (with
# = 0.0, o = 1.0). The BLUEs were calculated by making use of the entries in Table
3.1. The observed record values and the estimates obtained are presented in Table
4.1.

With these estimates and the use of Tables 3.2 and 3.4, we can determine the
confidence intervals for § (when o is known to be 1.0 ) based on the Edgeworth
approximation as well as using the simulated percentage points, based on the pivotal
quantity R; through the formula

P (0"~ 0v/Vi(B1)1_ajy SO <0 —0VVi (Bi)yp) =1-a

For example, when n = 7 and ¢ = 5, we have 90% C.I's of 8 as

Edgeworth Simulated
(-0.420, 0.701 ) (-0.448, 0.592)
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Table 4.1 The observed record values and the estimates of # and ¢

¢ n | Records o* o*

3 4 (1.105, 1.015, .705, .669 .000838  .999279
5 | .846, .844, .777, .718, .611 -.002344  .999917
6 | 1.482, .853, .712, .688, .648, .576 004462  .999863
7 | .808, .776, .767, .692, .630, .610, .539 | -.000584 .999462

4 4 11.232,.913, .802, .735 -.001431 .998474
5 1 .995, .927, .900, .709, .696 006045  .998997
6 | 1.067, 1.029, .896, .673, .667, .663 004123  1.00284
7 | 1.734, .891, .755, .734, .676, .639, .628 | -.000120 .998634

5 411176, .975, .794, .780 .000854  .996102
5 | 1.257, 983, .798, .754, .743 002342  .996655
6 | .984, .882, .862, .850, .739, .714 001434  .998260
7 | 1.012, .971, .848, .830, .709, .702, .688 | -.002229 1.000068

It is clear that the confidence intervals based on the Edgeworth approximation
and those determined by simulation are quite close to those determined through the
exact probabilities.

Similarly, with the use of Tables 3.2 and 3.5, we determined the confidence
intervals for o, through the formula

*

o” o
P o< =1-a.
(1 +VVa(R2)i o 1+ vVe (RQ)a/2>

For example, when n = 7 and ¢ = 5, we have 90% C.I’s of o as

Edgeworth Simulated
(0.496 , 2.528) ( 0.534, 2.528)

Once again, we observe that the confidence intervals based on the Edgeworth
approximation are somewhat close to those based on the exact results except for
m= 3.

In the case when ¢ is unknown, the Edgeworth approximation method can not
be used to draw inference for ¢ using R3. So, we computed the confidence intervals
for 8 based on the simulated percentage points of the pivotal quantity R3 (given in
Table 3.6) through the formula

P (8"~ 0"V (Rs)y_ap SO S0~ 0" VWA (Ra)ppy) =10,
For example, when n = 7 and ¢ = 5, we have 90% C.I's of # when ¢* = 1.000068 as

(—0.448,1.040)

As we can see from all the above tables, all confidence intervals become narrower
as n increases.
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