# CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES 

Se-Kyung Chang* and Min-Young Lee**


#### Abstract

This paper presents characterizations based on the identical distribution and the finite moments of the exponential distribution by record values. We prove that $X \in \operatorname{EXP}(\sigma), \sigma>0$, if and only if $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for $n>1$ and $k \geq 1$ are identically distributed. Also, we show that $X \in \operatorname{EXP}(\sigma), \sigma>0$, if and only if $E\left(X_{U(n+k)}-X_{U(n)}\right)=$ $E\left(X_{U(n)}-X_{U(n-k)}\right)$ for $n>1$ and $k \geq 1$.


## 1. Introduction

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent and identically distributed(i.i.d.) random variables with cumulative distribution function(cdf) $F(x)$ and probability density function(pdf) $f(x)$. Suppose

$$
Y_{n}=\max \left\{X_{1}, X_{2}, \cdots, X_{n}\right\}
$$

for $n \geq 1$. We say $X_{j}$ is an upper record value of this sequence, if $Y_{j}>Y_{j-1}$ for $j>1$. By definition, $X_{1}$ is an upper as well as a lower record value.

The indices at which the upper record values occur are given by the record times $\{U(n), n \geq 1\}$, where $U(n)=\min \left\{j \mid j>U(n-1), X_{j}>\right.$ $\left.X_{U(n-1)}, n \geq 2\right\}$ with $U(1)=1$.

We assume that all upper record values $X_{U(i)}$ for $i \geq 1$ occur at a sequence $\left\{X_{n}, n \geq 1\right\}$ of i.i.d. random variables.

A continuous random variable $X$ has the exponential distribution with parameter $\sigma>0$ if it has a cdf $F(x)$ of the form

$$
F(x)=\left\{\begin{array}{l}
1-e^{-\frac{x}{\sigma}}, x>0, \sigma>0  \tag{1}\\
0, \text { otherwise }
\end{array}\right.
$$

[^0]A notation that designates that $X$ has the cdf (1) is $X \in E X P(\sigma)$.
Some characterizations based on the identical distribution are known. Ahsanullah [1,2] characterized that $X \in \operatorname{EXP}(\sigma), \sigma>0$ if and only if $X_{U(n)}$ and $Z_{1}+Z_{2}+\cdots+Z_{n}$ for $n>1$ are identically distributed, where $Z_{1}, Z_{2}, \cdots, Z_{n}$ are i.i.d. $\operatorname{EXP}(\sigma)$. And Ahsanullah [1, 2] proved that $X \in$ $E X P(\sigma), \sigma>0$, if and only if $X_{U(n)}-X_{U(m)}$ and $X_{U(n-m)}$ for $1<m<n$ are identically distributed. Moreover Ahsanullah [1, 2] showed that $X \in$ $E X P(\sigma), \sigma>0$, if and only if $X_{U(n+1)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-1)}$ for $n>1$ are identically distributed and $X \in E X P(\sigma), \sigma>0$, if and only if $E\left[X_{U(n+1)}-X_{U(n)}\right]=E\left[X_{U(n)}-X_{U(n-1)}\right]$ for $n>1$. We extend the above results from the record times $(U(n-1), U(n), U(n+1))$ to the record times $(U(n-k), U(n), U(n+k))$.

In this paper, we will give characterizations based on the identical distribution and the expectation of the exponential distribution by record values.

## 2. Main results

Theorem 1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with cdf $F(x)$ which is an absolutely continuous with pdf $f(x)$ and $F(x)<1$ for $x>0$. Then $F(x)=1-e^{-\frac{x}{\sigma}}$ for $x>0$ and $\sigma>0$, if and only if $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for $n>1$ and $k \geq 1$ are identically distributed and $F(x)$ belongs to $C_{2}$.

Proof. If $F(x)=1-e^{-\frac{x}{\sigma}}$ for $x>0$ and $\sigma>0$, then it can easily be seen that $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for $n>1$ and $k>1$ are identically distributed.

We will prove the sufficient condition. The joint pdf $f_{n, n+k}(x, y)$ of $X_{U(n)}$ and $X_{U(n+k)}$ is

$$
f_{n, n+k}(x, y)=\frac{1}{\Gamma(n) \Gamma(k)}(R(x))^{n-1} r(x)(R(y)-R(x))^{k-1} f(y)
$$

for $0<x<y, n>1$ and $k \geq 1$.

Consider the functions $V=X_{U(n+k)}-X_{U(n)}$ and $W=X_{U(n)}$. It follows that $x_{U(n)}=w, x_{U(n+k)}=v+w$ and $|J|=1$. Thus we can write the joint pdf $f_{V, W}(v, w)$ of $V$ and $W$ as

$$
f_{V, W}(v, w)=\frac{1}{\Gamma(n) \Gamma(k)}(R(w))^{n-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w)
$$

for $v, w>0, n>1$ and $k \geq 1$.
The marginal pdf $f_{V}(v)$ of $V$ is given by

$$
\begin{align*}
& f_{V}(v)=\int_{0}^{\infty} f_{V, W}(v, w) d w  \tag{2}\\
& =\int_{0}^{\infty} \frac{1}{\Gamma(n) \Gamma(k)}(R(w))^{n-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w) d w
\end{align*}
$$

for $v>0, n>1$ and $k \geq 1$.
Also, the joint pdf $f_{n-k, n}(x, y)$ of $X_{U(n-k)}$ and $X_{U(n)}$ is

$$
f_{n-k, n}(x, y)=\frac{1}{\Gamma(n-k) \Gamma(k)}(R(x))^{n-k-1} r(x)(R(y)-R(x))^{k-1} f(y)
$$

for $0<x<y, n>1$ and $k \geq 1$.
Let us use the transformation $V=X_{U(n)}-X_{U(n-k)}$ and $W=X_{U(n-k)}$. The Jacobian of the transformation is $|J|=1$. Thus we can write the joint pdf $f_{V, W}(v, w)$ of $V$ and $W$ as
$f_{V, W}(v, w)=\frac{1}{\Gamma(n-k) \Gamma(k)}(R(w))^{n-k-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w)$
for $v, w>0, n>1$ and $k \geq 1$.
The marginal pdf $f_{V}(v)$ of $V$ is given by

$$
\begin{align*}
f_{V}(v)= & \int_{0}^{\infty} f_{V, W}(v, w) d w \\
= & \int_{0}^{\infty} \frac{1}{\Gamma(n-k) \Gamma(k)}(R(w))^{n-k-1} r(w)  \tag{3}\\
& \times(R(v+w)-R(w))^{k-1} f(v+w) d w
\end{align*}
$$

for $v>0, n>1$ and $k \geq 1$.

Since $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for $n>1$ and $k \geq 1$ are identically distributed, by using (2) and (3), we get

$$
\begin{align*}
& \int_{0}^{\infty} \frac{1}{\Gamma(n) \Gamma(k)}(R(w))^{n-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w) d w \\
&=\int_{0}^{\infty} \frac{1}{\Gamma(n-k) \Gamma(k)}(R(w))^{n-k-1} r(w)  \tag{4}\\
& \quad \times(R(v+w)-R(w))^{k-1} f(v+w) d w
\end{align*}
$$

for $v>0, n>1$ and $k \geq 1$.
From (4), we get on simplification

$$
\begin{align*}
\int_{0}^{\infty}(R(w))^{n-k-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w) &  \tag{5}\\
& \times\left(\frac{(R(w))^{k}}{\Gamma(n)}-\frac{1}{\Gamma(n-k)}\right) d w=0
\end{align*}
$$

for $v>0, n>1$ and $k \geq 1$.
We know that $r(x)$ and $R(x)$ are greater than zero. In addition, we say $F(x)$ belongs to the class $C_{2}$ if the hazard rate $r(x)$ is either monotone increasing or decreasing. Consequently $R(v+w) \leq R(w)$ or $R(v+w) \geq$ $R(w)$. Therefore $R(v+w)-R(w) \leq 0$ or $R(v+w)-R(w) \geq 0$.

Thus if $F(x) \in C_{2}$, then (5) is true if

$$
R(v+w)-R(w)=0
$$

for $w$ and any fixed $v>0$.
Hence

$$
r(v+w)=r(w)
$$

for $w$ and any fixed $v>0$.
By the characterization property of the exponential distribution, we have

$$
F(x)=1-e^{-\frac{x}{\sigma}}
$$

for $x>0$ and $\sigma>0$.
This completes the proof.

Theorem 2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with $\operatorname{cdf} F(x)$ which is an absolutely continuous with pdf $f(x)$ and $F(x)<1$ for $x>0$. Then $F(x)=1-e^{-\frac{x}{\sigma}}$ for $x>0$ and $\sigma>0$, if and only if $E\left(X_{U(n+k)}-X_{U(n)}\right)=E\left(X_{U(n)}-X_{U(n-k)}\right)$ for $n>1$ and $k \geq 1$ is finite and $F(x)$ belongs to $C_{2}$.

Proof. If $F(x)=1-e^{-\frac{x}{\sigma}}$ for $x>0$ and $\sigma>0$, then it can easily be seen that $E\left(X_{U(n+k)}-X_{U(n)}\right)=E\left(X_{U(n)}-X_{U(n-k)}\right)$ for $n>1$ and $k>1$.

We will prove the sufficient condition. From (2) of Theorem 1, we can write the expectation of $V=X_{U(n+k)}-X_{U(n)}$ as

$$
\begin{align*}
& E\left(X_{U(n)}-X_{U(n-k)}=V\right)=\int_{0}^{\infty} v f_{V}(v) d v \\
& =\int_{0}^{\infty} v\left(\int_{0}^{\infty} \frac{1}{\Gamma(n) \Gamma(k)}(R(w))^{n-1} r(w)\right. \\
& \left.\quad \times(R(v+w)-R(w))^{k-1} f(v+w) d w\right) d v  \tag{6}\\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\Gamma(n) \Gamma(k)}(R(w))^{n-1} r(w) \\
& \\
& \quad \times(R(v+w)-R(w))^{k-1} f(v+w) v d w d v
\end{align*}
$$

for $n>1$ and $k \geq 1$.
In the same manner as (6), we can write the expectation of $V=X_{U(n)}-$ $X_{U(n-k)}$ as

$$
\begin{aligned}
& E\left(X_{U(n)}-X_{U(n-k)}=V\right) \\
& =\int_{0}^{\infty} v f_{V}(v) d v \\
(7) & =\int_{0}^{\infty} u\left(\int_{0}^{\infty} \frac{(R(w))^{n-k-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w)}{\Gamma(n-k) \Gamma(k)} d w\right) d v \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{(R(w))^{n-k-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w) v}{\Gamma(n-k) \Gamma(k)} d w d v
\end{aligned}
$$

for $n>1$ and $k \geq 1$.
Since $E\left(X_{U(n+k)}-X_{U(n)}\right)=E\left(X_{U(n)}-X_{U(n-k)}\right)$ for $n>1$ and $k \geq 1$
is finite, by using (6) and (7), we get

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\Gamma(n) \Gamma(k)}(R(w))^{n-1} r(w) \\
& \times(R(v+w)-R(w))^{k-1} f(v+w) v d w d v  \tag{8}\\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{(R(w))^{n-k-1} r(w)(R(v+w)-R(w))^{k-1} f(v+w) v}{\Gamma(n-k) \Gamma(k)} d w d v
\end{align*}
$$

for $n>1$ and $k \geq 1$.
From (8), we get on simplification

$$
\begin{align*}
\int_{0}^{\infty} \int_{0}^{\infty}(R(w))^{n-k-1} r(w)( & R(v+w)-R(w))^{k-1} f(v+w) v  \tag{9}\\
& \times\left(\frac{(R(w))^{k}}{\Gamma(n)}-\frac{1}{\Gamma(n-k)}\right) d w d v=0
\end{align*}
$$

for $n>1$ and $k \geq 1$.
In the same manner as Theorem 1 , if $F(x) \in C_{2}$, then (9) is true if

$$
R(v+w)-R(w)=0
$$

for $w$ and any fixed $v>0$.
Hence

$$
r(v+w)=r(w)
$$

for $w$ and any fixed $v>0$.
By the characterization property of the exponential distribution, we have

$$
F(x)=1-e^{-\frac{x}{\sigma}}
$$

for $x>0$ and $\sigma>0$.
This completes the proof.

## References

1. M. Ahsanuallah, Record Statistics, Nova Science Publishers, Inc., NY, 1995.
2. M. Ahsanuallah, Record Values-Theory and Applications, University Press of America, Inc., NY, 2004.
3. J. Galambos and S. Kotz, Characterizations of Probability Distributions. Lecture Notes in Mathematics. No. 675, Springer Verlag, NY, 1978.

* 

Department of Mathematics Education
Cheongju University
Cheonguu, Chungbuk 360-764, Republic of Korea
E-mail: skchang@cju.ac.kr
**
Department of Applied Mathematics
Dankook University
Cheonan, Chungnam 330-714, Republic of Korea
E-mail: leemy@dku.edu


[^0]:    Received November 1, 2006.
    2000 Mathematics Subject Classifications: Primary 60E05, 62G30, 62H05, 62H10, 65Q05.

    Key words and phrases: Record Value, Characterization, Exponential Distribution, Identical Distribution, Expectation.

