• Title/Summary/Keyword: Dissipation current

Search Result 450, Processing Time 0.024 seconds

Fabrication and characterization of CdS photoconductive cell by the print/sintering method (인쇄/소결 방법에 의한 CdS 광전도 셀 제작과 특성)

  • Jeong, Tae-Soo;Kim, Taek-Sung;Jeong, Cheol-Hoon;Lee, Hoon;Shin, Yeong-Jin;Hong, Kwang-Joon;Yu, Pyeong-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.350-355
    • /
    • 1998
  • We fabricated a photoconductive cell made of polycrystalline CdS thick film which has high photo-sensitivity using a print/sintering method. The resultant grain size is about $4\;{\mu}m$. When $CuCl_2$ of 0.06 to 0.12 mg is added, the sensitivity and the ratio of photocurrent to dark current are 0.8 and $10^5$, respectively. The response wavelength is 511 nm. The rise and decay response times are 50 and 20 ms, respectively. In addition, the maximum power dissipation is beyond 80mW. We noticed that the addition of $CuCl_2$ between 0.06 and 0.12 mg to 1g of CdS results in a reliable formation of photoconductive sensor.

  • PDF

Synthesis and Properties of Ba(Ti,Sn)O3 Films by E-Beam Evaporation (전자빔증발법에 의한 Ba(Ti,Sn)O3막의 제조 및 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.373-378
    • /
    • 2008
  • $Ba(Ti,Sn)O_3$ thin films, for use as dielectrics for MLCCs, were grown from Sn doped BaTiO3 sources by e-beam evaporation. The crystalline phase, microstructure, dielectric and electrical properties of films were investigated as a function of the (Ti+Sn)/Ba ratio. When $BaTiO_3$ sources doped with $20{\sim}50\;mol%$ of Sn were evaporated, $BaSnO_3$films were grown due to the higher vapor pressure of Ba and Sn than of Ti. However, it was possible to grow the $Ba(Ti,Sn)O_3$ thin films with {\leq}\;15\;mol%$ of Sn by co-evaporation of BTS and Ti metal sources. The (Ti+Sn)/Ba and Sn/Ti ratio affected the microstructure and surface roughness of films and the dielectric constant increased with increasing Sn content. The dielectric constant and dissipation factor of $Ba(Ti,Sn)O_3$ thin films with {\leq}\;15\;mol%$ of Sn showed the range of 120 to 160 and $2.5{\sim}5.5%$ at 1 KHz, respectively. The leakage current density of films was order of the $10^{-9}{\sim}10^{-8}A/cm^2$ at 300 KV/cm. The research results showed that it was feasible to grow the $Ba(Ti,Sn)O_3$ thin films as dielectrics for MLCCs by an e-beam evaporation technique.

A 0.8-V Static RAM Macro Design utilizing Dual-Boosted Cell Bias Technique (이중 승압 셀 바이어스 기법을 이용한 0.8-V Static RAM Macro 설계)

  • Shim, Sang-Won;Jung, Sang-Hoon;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this paper, an ultra low voltage SRAM design method based on dual-boosted cell bias technique is described. For each read/write cycle, the wordline and cell power node of the selected SRAM cells are boosted into two different voltage levels. This enhances SNM(Static Noise Margin) to a sufficient amount without an increase of the cell size, even at sub 1-V supply voltage. It also improves the SRAM circuit speed owing to increase of the cell read-out current. The proposed design technique has been demonstrated through 0.8-V, 32K-byte SRAM macro design in a $0.18-{\mu}m$ CMOS technology. Compared to the conventional cell bias technique, the simulation confirms an 135 % enhancement of the cell SNM and a 31 % faster speed at 0.8-V supply voltage. This prototype chip shows an access time of 23 ns and a power dissipation of $125\;{\mu}W/Hz$.

Security Scheme for Prevent malicious Nodes in WiMAX Environment (노드간 에너지 소비를 효율적으로 분산시킨 PRML 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Nam-Kyu;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.774-784
    • /
    • 2009
  • A wireless sensor network consisting of a large number of nodes with limited battery power should minimize energy consumption at each node to prolong the network lifetime. To improve the sensitivity of wireless sensor networks, an efficient scheduling algorithm and energy management technology for minimizing the energy consumption at each node is desired. ill this paper, we propose energy-aware routing mechanism for maximum lifetime and to optimize the solution quality for sensor network maintenance and to relay node from its adjacent cluster heads according to the node"s residual energy and its distance to the base station. Proposed protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of where the sink is located outside or inside the cluster. Simulation results of proposed scheme show that our mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime. To verify propriety using NS-2, proposed scheme constructs sensor networks adapt to current model and evaluate consumption of total energy, energy consumption of cluster head, average energy dissipation over varying network areas with HEED and LEACH-C.

Design of the 1.9-GHz CMOS Ring Voltage Controlled Oscillator using VCO-gain-controlled delay cell (이득 제어 지연 단을 이용한 1.9-GHz 저 위상잡음 CMOS 링 전압 제어 발진기의 설계)

  • Han, Yun-Tack;Kim, Won;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.72-78
    • /
    • 2009
  • This paper proposes a low phase noise ring voltage controlled oscillator(VCO) with a standard $0.13{\mu}m$ CMOS process for PLL circuit using the VCO-gain-controlled Delay cell. The proposed Delay cell architecture with a active resistor using a MOS transistor. This method can reduced a VCO gain so that improve phase noise. And, Delay cell consist of Wide-Swing Cascode current mirror, Positive Latch and Symmetric load for low phase noise. The measurement results demonstrate that the phase noise is -119dBc/Hz at 1MHz offset from 1.9GHz. The VCO gain and power dissipation are 440MHz/V and 9mW, respectively.

Multichannel Transimpedance Amplifier Away in a $0.35\mu m$ CMOS Technology for Optical Communication Applications (광통신용 다채널 CMOS 차동 전치증폭기 어레이)

  • Heo Tae-Kwan;Cho Sang-Bock;Park Min Park
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.53-60
    • /
    • 2005
  • Recently, sub-micron CMOS technologies have taken the place of III-V materials in a number of areas in integrated circuit designs, in particular even for the applications of gjgabit optical communication applications due to its low cost, high integration level, low power dissipation, and short turn-around time characteristics. In this paper, a four-channel transimpedance amplifier (TIA) array is realized in a standard 0.35mm CMOS technology Each channel includes an optical PIN photodiode and a TIA incorporating the fully differential regulated cascode (RGC) input configuration to achieve effectively enhanced transconductance(gm) and also exploiting the inductive peaking technique to extend the bandwidth. Post-layout simulations show that each TIA demonstrates the mid-band transimpedance gain of 59.3dBW, the -3dB bandwidth of 2.45GHz for 0.5pF photodiode capacitance, and the average noise current spectral density of 18.4pA/sqrt(Hz). The TIA array dissipates 92mw p in total from a single 3.3V supply The four-channel RGC TIA array is suitable for low-power, high-speed optical interconnect applications.

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham;Mara, Thomas G.;Izukawa, Nicole
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2020
  • Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

Study on the Electro-Optic Characteristics of $CdS_{1-x}Se_{x}$ Photoconductive Thin Films ($CdS_{1-x}Se_{x}$ 광도전 박막의 전기-광학적 특성연구)

  • Yang, D.I.;Shin, Y.J.;Lim, S.Y.;Park, S.M.;Choi, Y.D.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 1992
  • We report the crystal growth and the electro-optic characteristics of $CdS_{1-x}Se_{x}$ thin films. $CdS_{1-x}Se_{x}$ thin films wire deposited on the alumina plate by electron beam evaporation technique in pressure of $1.5{\times}10^{-7}$ torr, voltage of 4kV, current of 2.5mA and substrate temperature of $300^{\circ}C$. The deposited $CdS_{1-x}Se_{x}$ thin films were proved to be a polycrystal with hexagonal structure through X-ray diffraction patterns. $CdS_{1-x}Se_{x}$ photoconductive films showed high photoconductivity after annealing at $550^{\circ}C$ for 30 minutes. And the films have been investigated the Hall effect, photocurrent spectra, sensitivity, maximum allowable power dissipation and response time.

  • PDF

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.