Browse > Article

Multichannel Transimpedance Amplifier Away in a $0.35\mu m$ CMOS Technology for Optical Communication Applications  

Heo Tae-Kwan (School of Electrical Eng., University of Ulsan)
Cho Sang-Bock (School of Electrical Eng., University of Ulsan)
Park Min Park (Dept. of Information Electronics Eng., Ewha Womans University)
Publication Information
Abstract
Recently, sub-micron CMOS technologies have taken the place of III-V materials in a number of areas in integrated circuit designs, in particular even for the applications of gjgabit optical communication applications due to its low cost, high integration level, low power dissipation, and short turn-around time characteristics. In this paper, a four-channel transimpedance amplifier (TIA) array is realized in a standard 0.35mm CMOS technology Each channel includes an optical PIN photodiode and a TIA incorporating the fully differential regulated cascode (RGC) input configuration to achieve effectively enhanced transconductance(gm) and also exploiting the inductive peaking technique to extend the bandwidth. Post-layout simulations show that each TIA demonstrates the mid-band transimpedance gain of 59.3dBW, the -3dB bandwidth of 2.45GHz for 0.5pF photodiode capacitance, and the average noise current spectral density of 18.4pA/sqrt(Hz). The TIA array dissipates 92mw p in total from a single 3.3V supply The four-channel RGC TIA array is suitable for low-power, high-speed optical interconnect applications.
Keywords
transimpedance amplifier; regulated cascode; active inductor; optical interconnects;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. Razavi, 'Design of Integrated Circuits for Optical Communications', McGraw-Hill, 2003
2 C. -H. Lu and W. -Z. Chen, 'Bandwidth Enhancement Techniques for Transimpedance Amplifier in CMOS Technologies', Proceedings of the 27th European Solid-state circuits Conference, pp. 192-195, Sep. 2001
3 S. M. Park and S. Hong, 'A 65mW 5-Gb/s/ch Current-Mode Common-Base Transimpedance Amplifier Array For Optical Interconnects', IEEE Photonics Technology Letters, Vol. 15, No. 8, pp. 1138-1140, Aug. 2003   DOI   ScienceOn
4 S. M. Park, '병렬식 광 인터컨넥트용 멀티채널 수신기 어레이,' 대한전자공학회 논문지, 제 42권 SD편, 2005년 7월   과학기술학회마을
5 S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, T. H. Lee, 'Bandwidth extension in CMOS with optimised on-chip inductors', IEEE J. of Solid-State Circuit, Vol. 35, No. 3, pp. 346-355, 2000   DOI   ScienceOn
6 C. Toumazou and S. M. Park, 'Wideband low noise CMOS transimpedance amplifier for gigaHertz operation', Electronics Letters, Vol. 32, No. 13, pp. 1194-1196, 1996   DOI   ScienceOn
7 T. Yoon and B. Jalali, '1Gbit/s fibre channel CMOS transimpedance amplifier', Electronics Letters, Vol.33, No.7, pp. 588-589, 1997   DOI   ScienceOn
8 S. M. Park and H. -J. Yoo, '1.25-Gb/s Regulated Cascade CMOS Transimpedance Amplifier For Gigabit Ethernet Application', IEEE J. of Solid-State Circuits, Vol. 39, No. 1, pp. 112-121, Jan. 2000   DOI
9 A. Schild, H. Rein, J. Mllrich, L. Altenhain, J. Blank, and K. Schrdinger, 'High-gain SiGe transimpedance amplifier array for a 12x10 Gb/s parallel optical-fiber link,' IEEE J. of Solid-State Circuits, Vol. 38, pp. 4-12, Jan. 2003   DOI   ScienceOn