• 제목/요약/키워드: Disease Network

검색결과 834건 처리시간 0.029초

심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별 (Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

동의보감 풍문 내 중풍증과 비병증, 역절풍증, 파상풍증 처방의 본초 조합 네트워크 비교 (A Comparative Study on the Herb Network of Prescriptions in the Dongui-Bogam Wind Chapter)

  • 추홍민;김철현;문연주;성강경;이상관
    • 대한한방내과학회지
    • /
    • 제38권6호
    • /
    • pp.1007-1020
    • /
    • 2017
  • Objectives: This study was carried out to investigate whether a prescription's composition varies according to the disease being caused by wind, which is one of the migratory pathogenic factors. Methods: An initial database and binary matrix of Pungmun in Dongui-Bogam, including its herbs and prescription, was constructed. With this data, a network map about wind stroke, arthralgia, acute arthritis, and tetanus in Dongui-Bogam was constructed. Results: Analysis of the network map about Pungmun in Dongui-Bogam revealed that the complete prescription network has more isolated nodes than does each disease's network map. Conclusions: The composition of prescriptions in Dongui-Bogam Pungmun differ according to the disease being caused by wind.

비알콜성 지방간 초음파 영상에 GLCM과 인공신경망을 적용한 비알콜성 지방간 질환 분류 (Non-alcoholic Fatty Liver Disease Classification using Gray Level Co-Ocurrence Matrix and Artificial Neural Network on Non-alcoholic Fatty Liver Ultrasound Images)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제17권5호
    • /
    • pp.735-742
    • /
    • 2023
  • 비알콜성 지방간은 심혈관계 질환, 당뇨병, 고혈압 및 신장질환의 발생에 있어 독립적인 위험인자에 해당하며, 최근에는 비알콜성 지방간에 대한 임상적 중요성이 증가하고 있다. 본 연구에서는 비알콜성 지방간 환자의 초음파영상에 대하여 질감분석 방법인 GLCM을 적용하여 특징값을 추출하고자 한다. 추출된 특징값들을 이용한 인공신경망 모델의 적용을 통하여 비알콜성 지방간의 지방침착 정도를 정상 간(normal), 경도 지방간(mild), 중등도 지방간(moderate), 중증 지방간(severe)으로 분류를 하고자 한다. GLCM알고리듬 적용 결과 Autocorrelation, Sum of squares, Sum average, Sum variance 파라미터 값들은 경도 지방간, 중등도 지방간을 거쳐 중증 지방간으로 갈수록 특징값의 평균값이 증가하는 경향성을 나타내었다. 인공신경망 모델의 입력은 비알콜성 지방간질환의 초음파영상에 GLCM 알고리듬을 적용하여 추출한 Autocorrelation, Sum of squares, Sum average, Sum variance의 4개의 파라미터들을 인공신경망 모델의 입력값으로 적용하였다. 비알콜성 지방간질환의 초음파영상에 GLCM 알고리듬을 적용하여 추출한 영상을 인공신경망에 적용하여 분류 정확도를 평가한 결과 92.5%의 높은 정확도를 나타내었다. 이러한 결과를 통하여 비알콜성 지방간 환자의 초음파 영상에 대한 질감 분석 GLCM 연구 시 본 연구의 결과를 기초자료로 제시를 하고자 한다.

A Binary Classifier Using Fully Connected Neural Network for Alzheimer's Disease Classification

  • Prajapati, Rukesh;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • 제9권1호
    • /
    • pp.21-32
    • /
    • 2022
  • Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.

MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.227-244
    • /
    • 2011
  • MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of miRNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권1호
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

생물학 문헌 데이터의 제목과 본문을 이용한 질병 관련 유전자 추론 방법 (Inferring Disease-related Genes using Title and Body in Biomedical Text)

  • 김정우;김현진;여윤구;신민철;박상현
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권1호
    • /
    • pp.28-36
    • /
    • 2017
  • 1990년대 게놈프로젝트 이후 유전자와 관련된 많은 연구가 진행되고 있다. 데이터 저장 기술의 발달로 연구의 결과물들은 다량의 문헌들로 기록되고 있으며, 이러한 문헌들은 새로운 생물학적 관계들을 추론하는 데이터로 유용하게 사용되고 있다. 이러한 이유로 본 연구에서는 생물학 문헌들을 활용하여 질병과 관련한 유전자를 추론하는 방법론에 대해서 제안한다. 문헌들을 제목과 본문으로 구분하고, 각 영역에서 등장한 유전자들을 추출한다. 제목 영역에서 추출된 유전자는 중심 유전자로 구분하고, 본문 영역에서 추출된 유전자는 제목에서 추출된 유전자와 관계를 갖는 주변 유전자로 구분한다. 이러한 과정을 각 문헌에 적용하여, 지역 유전자 네트워크를 구축한다. 구축된 지역 유전자 네트워크는 모두 연결하여 전역유전자 네트워크를 구축한다. 구축한 네트워크를 분석하여 질병 관련 유전자를 추론하였으며, 비교 실험을 통해 제안하는 방법론이 질병 관련 유전자를 추론하는 유용한 방법론임을 입증하였다.

Application of Pharmacovigilance Methods in Occupational Health Surveillance: Comparison of Seven Disproportionality Metrics

  • Bonneterre, Vincent;Bicout, Dominique Joseph;De Gaudemaris, Regis
    • Safety and Health at Work
    • /
    • 제3권2호
    • /
    • pp.92-100
    • /
    • 2012
  • Objectives: The French National Occupational Diseases Surveillance and Prevention Network (RNV3P) is a French network of occupational disease specialists, which collects, in standardised coded reports, all cases where a physician of any specialty, referred a patient to a university occupational disease centre, to establish the relation between the disease observed and occupational exposures, independently of statutory considerations related to compensation. The objective is to compare the relevance of disproportionality measures, widely used in pharmacovigilance, for the detection of potentially new disease ${\times}$ exposure associations in RNV3P database (by analogy with the detection of potentially new health event ${\times}$ drug associations in the spontaneous reporting databases from pharmacovigilance). Methods: 2001-2009 data from RNV3P are used (81,132 observations leading to 11,627 disease ${\times}$ exposure associations). The structure of RNV3P database is compared with the ones of pharmacovigilance databases. Seven disproportionality metrics are tested and their results, notably in terms of ranking the disease ${\times}$ exposure associations, are compared. Results: RNV3P and pharmacovigilance databases showed similar structure. Frequentist methods (proportional reporting ratio [PRR], reporting odds ratio [ROR]) and a Bayesian one (known as BCPNN for "Bayesian Confidence Propagation Neural Network") show a rather similar behaviour on our data, conversely to other methods (as Poisson). Finally the PRR method was chosen, because more complex methods did not show a greater value with the RNV3P data. Accordingly, a procedure for detecting signals with PRR method, automatic triage for exclusion of associations already known, and then investigating these signals is suggested. Conclusion: This procedure may be seen as a first step of hypothesis generation before launching epidemiological and/or experimental studies.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.