DOI QR코드

DOI QR Code

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung (Toronto Western Research Institute, University Health Network) ;
  • Fomenko, Anton (Toronto Western Research Institute, University Health Network) ;
  • Lozano, Andres M. (Toronto Western Research Institute, University Health Network)
  • Received : 2018.09.04
  • Accepted : 2018.11.13
  • Published : 2019.01.01

Abstract

Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

Keywords

References

  1. Adrianov OS, Vykhodtseva NI, Fokin VF, Uranova NA, Avirom VM : Reversible functional shutdown of the optic tract on exposure to focused ultrasound. Biull Eksp Biol Med 97 : 760-762, 1984 https://doi.org/10.1007/BF00804167
  2. Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, Wels WS, et al. : Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res 73 : 1892-1899, 2013 https://doi.org/10.1158/0008-5472.CAN-12-2609
  3. Alkins R, Burgess A, Kerbel R, Wels WS, Hynynen K : Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. Neuro Oncol 18 : 974-981, 2016 https://doi.org/10.1093/neuonc/nov318
  4. Alkins R, Huang Y, Pajek D, Hynynen K : Cavitation-based third ventriculostomy using MRI-guided focused ultrasound. J Neurosurg 119 : 1520-1529, 2013 https://doi.org/10.3171/2013.8.JNS13969
  5. Alomar S, King NK, Tam J, Bari AA, Hamani C, Lozano AM : Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: a meta-analysis. Mov Disord 32 : 53-63, 2017 https://doi.org/10.1002/mds.26924
  6. Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, Rodriguez R, et al. : Therapeutic efficacy of unilateral subthalamotomy in Parkinson's disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80 : 979-985, 2009 https://doi.org/10.1136/jnnp.2008.154948
  7. Alvarez M, Paull K, Monks A, Hose C, Lee JS, Weinstein J, et al. : Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen. J Clin Invest 95 : 2205-2214, 1995 https://doi.org/10.1172/JCI117910
  8. Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N : Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 169 : 103-111, 2013 https://doi.org/10.1016/j.jconrel.2013.04.007
  9. Beaumont TL, Mohammadi AM, Kim AH, Barnett GH, Leuthardt EC : Magnetic resonance imaging-guided laser interstitial thermal therapy for glioblastoma of the corpus callosum. Neurosurgery 83 : 556-565, 2018 https://doi.org/10.1093/neuros/nyx518
  10. Bond AE, Shah BB, Huss DS, Dallapiazza RF, Warren A, Harrison MB, et al. : Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant parkinson disease: a randomized clinical trial. JAMA Neurol 74 : 1412-1418, 2017 https://doi.org/10.1001/jamaneurol.2017.3098
  11. Borrelli MJ, Bailey KI, Dunn F : Early ultrasonic effects upon mammalian CNS structures (chemical synapses). J Acoust Soc Am 69 : 1514-1516, 1981 https://doi.org/10.1121/1.385791
  12. Burgess A, Dubey S, Yeung S, Hough O, Eterman N, Aubert I, et al. : Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior. Radiology 273 : 736- 745, 2014 https://doi.org/10.1148/radiol.14140245
  13. Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K : Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Control Release 163 : 125-129, 2012 https://doi.org/10.1016/j.jconrel.2012.08.012
  14. Burgess A, Shah K, Hough O, Hynynen K : Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 15 : 477-491, 2015 https://doi.org/10.1586/14737175.2015.1028369
  15. Bystritsky A, Korb AS, Douglas PK, Cohen MS, Melega WP, Mulgaonkar AP, et al. : A review of low-intensity focused ultrasound pulsation. Brain Stimul 4: 125-136, 2011 https://doi.org/10.1016/j.brs.2011.03.007
  16. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. : VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36 : 827-835, 2004 https://doi.org/10.1038/ng1395
  17. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, et al. : Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8 : 343re342, 2016
  18. Chang EL, Ting CY, Hsu PH, Lin YC, Liao EC, Huang CY, et al. : Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. J Control Release 255 : 164-175, 2017 https://doi.org/10.1016/j.jconrel.2017.04.010
  19. Chang JW, Park CK, Lipsman N, Schwartz ML, Ghanouni P, Henderson JM, et al. : A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: results at the 2-year followup. Ann Neurol 83 : 107-114, 2018 https://doi.org/10.1002/ana.25126
  20. Chang WS, Jung HH, Kweon EJ, Zadicario E, Rachmilevitch I, Chang JW : Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry 86 : 257-264, 2015 https://doi.org/10.1136/jnnp-2014-307642
  21. Chang WS, Jung HH, Zadicario E, Rachmilevitch I, Tlusty T, Vitek S, et al. : Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J Neurosurg 124 : 411-416, 2016 https://doi.org/10.3171/2015.3.JNS142592
  22. Chen H, Konofagou EE : The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab 34 : 1197-1204, 2014 https://doi.org/10.1038/jcbfm.2014.71
  23. Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, et al. : Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncol 12 : 1050-1060, 2010 https://doi.org/10.1093/neuonc/noq054
  24. Chen PY, Wei KC, Liu HL : Neural immune modulation and immunotherapy assisted by focused ultrasound induced blood-brain barrier opening. Hum Vaccin Immunother 11 : 2682-2687, 2015 https://doi.org/10.1080/21645515.2015.1071749
  25. Christmas D, Eljamel MS, Butler S, Hazari H, MacVicar R, Steele JD, et al. : Long term outcome of thermal anterior capsulotomy for chronic, treatment refractory depression. J Neurol Neurosurg Psychiatry 82 : 594-600, 2011 https://doi.org/10.1136/jnnp.2010.217901
  26. Clement GT, White PJ, King RL, McDannold N, Hynynen K : A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med 24 : 1117-1125, 2005 https://doi.org/10.7863/jum.2005.24.8.1117
  27. Coluccia D, Fandino J, Schwyzer L, O'Gorman R, Remonda L, Anon J, et al. : First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound 2 : 17, 2014 https://doi.org/10.1186/2050-5736-2-17
  28. Dalecki D : Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 6 : 229-248, 2004 https://doi.org/10.1146/annurev.bioeng.6.040803.140126
  29. Dallapiazza RF, Timbie K, Elias WJ : Innovative Neuromodulation: Ultrasound Neuromodulation, ed 1. Cambridge : Academic Press, 2017, pp102-121
  30. Davson H : Review lecture. The blood-brain barrier. J Physiol 255 : 1-28, 1976 https://doi.org/10.1113/jphysiol.1976.sp011267
  31. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, et al. : Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 104 : 17204-17209, 2007 https://doi.org/10.1073/pnas.0708285104
  32. Dinno MA, Dyson M, Young SR, Mortimer AJ, Hart J, Crum LA : The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys Med Biol 34 : 1543-1552, 1989 https://doi.org/10.1088/0031-9155/34/11/003
  33. Duck FA : Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol 93 : 176-191, 2007 https://doi.org/10.1016/j.pbiomolbio.2006.07.008
  34. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, et al. : A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369 : 640-648, 2013 https://doi.org/10.1056/NEJMoa1300962
  35. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. : A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 375 : 730-739, 2016 https://doi.org/10.1056/NEJMoa1600159
  36. Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT : Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 32 : E3, 2012
  37. Fasano A, Llinas M, Munhoz RP, Hlasny E, Kucharczyk W, Lozano AM : MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes. Neurology 89 : 771-775, 2017 https://doi.org/10.1212/WNL.0000000000004268
  38. Fenoy AJ, Simpson RK Jr : Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg 120 : 132-139, 2014 https://doi.org/10.3171/2013.10.JNS131225
  39. Fishman PS, Frenkel V : Focused ultrasound: an emerging therapeutic modality for neurologic disease. Neurotherapeutics 14 : 393-404, 2017 https://doi.org/10.1007/s13311-017-0515-1
  40. Fomenko A, Neudorfer C, Dallapiazza RF, Kalia SK, Lozano AM : Lowintensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul 11 : 1209-1217, 2018 https://doi.org/10.1016/j.brs.2018.08.013
  41. Franklin ME, Foa EB : Treatment of obsessive compulsive disorder. Annu Rev Clin Psychol 7 : 229-243, 2011 https://doi.org/10.1146/annurev-clinpsy-032210-104533
  42. Fry W : Neurosonic surgery. Trans Am Neurol Assoc (80th Meeting) : 86-88, 1955
  43. Fry WJ : Intense ultrasound; a new tool for neurological research. J Ment Sci 100 : 85-96, 1954 https://doi.org/10.1192/bjp.100.418.85
  44. Fry WJ, Mosberg WH Jr, Barnard JW, Fry FJ : Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11 : 471-478, 1954 https://doi.org/10.3171/jns.1954.11.5.0471
  45. Fry WJ, Barnard JW, Fry FJ, Brennan JF : Ultrasonically produced localized selective lesions in the central nervous system. Am J Phys Med 34 : 413-423, 1955
  46. Hsu PH, Wei KC, Huang CY, Wen CJ, Yen TC, Liu CL, et al. : Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One 8 : e57682, 2013 https://doi.org/10.1371/journal.pone.0057682
  47. Huisman M, van den Bosch MA : MR-guided high-intensity focused ultrasound for noninvasive cancer treatment. Cancer Imaging 11 : S161- S166, 2011 https://doi.org/10.1102/1470-7330.2011.9041
  48. Huss DS, Dallapiazza RF, Shah BB, Harrison MB, Diamond J, Elias WJ : Functional assessment and quality of life in essential tremor with bilateral or unilateral DBS and focused ultrasound thalamotomy. Mov Disord 30 : 1937-1943, 2015 https://doi.org/10.1002/mds.26455
  49. Hynynen K, Jolesz FA : Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24 : 275-283, 1998 https://doi.org/10.1016/S0301-5629(97)00269-X
  50. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA : Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220 : 640-646, 2001 https://doi.org/10.1148/radiol.2202001804
  51. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, et al. : Focal disruption of the blood-brain barrier due to 260- kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105 : 445-454, 2006 https://doi.org/10.3171/jns.2006.105.3.445
  52. Intemann PM, Masterman D, Subramanian I, DeSalles A, Behnke E, Frysinger R, et al. : Staged bilateral pallidotomy for treatment of Parkinson disease. J Neurosurg 94 : 437-444, 2001 https://doi.org/10.3171/jns.2001.94.3.0437
  53. Jalali S, Huang Y, Dumont DJ, Hynynen K : Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT: experimental study in rats. BMC Neurol 10 : 114, 2010 https://doi.org/10.1186/1471-2377-10-114
  54. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, et al. : Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 32 : E1, 2012
  55. Johns LD : Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train 37 : 293-299, 2002
  56. Jordao JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, et al. : Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease. PLoS One 5 : e10549, 2010 https://doi.org/10.1371/journal.pone.0010549
  57. Jordao JF, Thevenot E, Markham-Coultes K, Scarcelli T, Weng YQ, Xhima K, et al. : Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol 248 : 16-29, 2013 https://doi.org/10.1016/j.expneurol.2013.05.008
  58. Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, et al. : Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-ofconcept study. Mol Psychiatry 20 : 1205-1211, 2015 https://doi.org/10.1038/mp.2014.154
  59. Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, et al. : Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia 57 : 325-334, 2016 https://doi.org/10.1111/epi.13284
  60. Kelly D : Psychosurgery and the limbic system. Postgrad Med J 49 : 825-833, 1973 https://doi.org/10.1136/pgmj.49.578.825
  61. Kennedy JE : High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5 : 321-327, 2005 https://doi.org/10.1038/nrc1591
  62. Kim M, Kim CH, Jung HH, Kim SJ, Chang JW : Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery. Biol Psychiatry 83 : e17-e18, 2018 https://doi.org/10.1016/j.biopsych.2017.05.008
  63. Kim SJ, Roh D, Jung HH, Chang WS, Kim CH, Chang JW : A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. J Psychiatry Neurosci 43 : 170188, 2018
  64. Kinoshita M, McDannold N, Jolesz FA, Hynynen K : Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 103 : 11719-11723, 2006 https://doi.org/10.1073/pnas.0604318103
  65. Kinoshita M, McDannold N, Jolesz FA, Hynynen K : Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340 : 1085-1090, 2006 https://doi.org/10.1016/j.bbrc.2005.12.112
  66. Kovacs Z, Werner B, Rassi A, Sass JO, Martin-Fiori E, Bernasconi M : Prolonged survival upon ultrasound-enhanced doxorubicin delivery in two syngenic glioblastoma mouse models. J Control Release 187 : 74-82, 2014 https://doi.org/10.1016/j.jconrel.2014.05.033
  67. Lee MS, Marsden CD : Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord 9 : 493-507, 1994 https://doi.org/10.1002/mds.870090502
  68. Lee W, Kim H, Jung Y, Song IU, Chung YA, Yoo SS : Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep 5 : 8743, 2015 https://doi.org/10.1038/srep08743
  69. Leinenga G, Gotz J : Scanning ultrasound removes amyloid-$\beta$ and restores memory in an Alzheimer's disease mouse model. Sci Transl Med 7 : 278ra233, 2015
  70. Li L, Xu B, Zhu Y, Chen L, Sokabe M, Chen L : DHEA prevents Abeta25-35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling. Neuropharmacology 59 : 323-333, 2010 https://doi.org/10.1016/j.neuropharm.2010.02.009
  71. Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, et al. : Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nat Commun 9 : 2336, 2018 https://doi.org/10.1038/s41467-018-04529-6
  72. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. : MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12 : 462-468, 2013 https://doi.org/10.1016/S1474-4422(13)70048-6
  73. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, et al. : Bloodbrain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255 : 415-425, 2010 https://doi.org/10.1148/radiol.10090699
  74. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, et al. : Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107 : 15205-15210, 2010 https://doi.org/10.1073/pnas.1003388107
  75. MacDonell J, Patel N, Rubino S, Ghoshal G, Fischer G, Burdette EC, et al. : Magnetic resonance-guided interstitial high-intensity focused ultrasound for brain tumor ablation. Neurosurg Focus 44 : E11, 2018
  76. Magara A, Buhler R, Moser D, Kowalski M, Pourtehrani P, Jeanmonod D : First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound 2 : 11, 2014 https://doi.org/10.1186/2050-5736-2-11
  77. Martinez-Fernandez R, Rodriguez-Rojas R, Del Alamo M, Hernandez-Fernandez F, Pineda-Pardo JA, Dileone M, et al. : Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease: a pilot study. Lancet Neurol 17 : 54-63, 2018 https://doi.org/10.1016/S1474-4422(17)30403-9
  78. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS : Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72 : 3652-3663, 2012 https://doi.org/10.1158/0008-5472.CAN-12-0128
  79. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K : Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 66 : 323-332; discussion 332, 2010 https://doi.org/10.1227/01.NEU.0000360379.95800.2F
  80. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K : MRIguided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 31 : 1527-1537, 2005 https://doi.org/10.1016/j.ultrasmedbio.2005.07.010
  81. McDannold NJ, Vykhodtseva NI, Hynynen K : Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 241 : 95-106, 2006 https://doi.org/10.1148/radiol.2411051170
  82. Meng Y, Suppiah S, Mithani K, Solomon B, Schwartz ML, Lipsman N : Current and emerging brain applications of MR-guided focused ultrasound. J Ther Ultrasound 5 : 26, 2017 https://doi.org/10.1186/s40349-017-0105-z
  83. Meyers R, Fry WJ, Fry FJ, Dreyer LL, Schultz DF, Noyes RF : Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg 16 : 32-54, 1959 https://doi.org/10.3171/jns.1959.16.1.0032
  84. Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J, et al. : Potential intracranial applications of magnetic resonance-guided focused ultrasound surgery. J Neurosurg 118 : 215-221, 2013 https://doi.org/10.3171/2012.10.JNS12449
  85. Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MB, et al. : Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound. J Neurosurg 118 : 1035-1045, 2013 https://doi.org/10.3171/2012.12.JNS121095
  86. Morris CE, Juranka PF : Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 93 : 822-833, 2007 https://doi.org/10.1529/biophysj.106.101246
  87. Na YC, Chang WS, Jung HH, Kweon EJ, Chang JW : Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease. Neurology 85 : 549-551, 2015 https://doi.org/10.1212/WNL.0000000000001826
  88. Naor O, Krupa S, Shoham S : Ultrasonic neuromodulation. J Neural Eng 13 : 031003, 2016 https://doi.org/10.1088/1741-2560/13/3/031003
  89. Niranjan A, Raju SS, Kooshkabadi A, Monaco E 3rd, Flickinger JC, Lunsford LD : Stereotactic radiosurgery for essential tremor: retrospective analysis of a 19-year experience. Mov Disord 32 : 769-777, 2017 https://doi.org/10.1002/mds.26925
  90. Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, et al. : Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 25 : 1560-1569, 2018 https://doi.org/10.1080/10717544.2018.1482972
  91. Nyborg WL : Acoustic streaming. San Diego : Academic Press, 1998, pp207-231
  92. O'Brien WD Jr : Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 93 : 212-255, 2007 https://doi.org/10.1016/j.pbiomolbio.2006.07.010
  93. Pardridge WM : Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3 : 90-105, 151, 2003 https://doi.org/10.1124/mi.3.2.90
  94. Pardridge WM : The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2 : 3-14, 2005 https://doi.org/10.1602/neurorx.2.1.3
  95. Park EJ, Zhang YZ, Vykhodtseva N, McDannold N : Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 163 : 277-284, 2012 https://doi.org/10.1016/j.jconrel.2012.09.007
  96. Patel DM, Walker HC, Brooks R, Omar N, Ditty B, Guthrie BL : Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases. Neurosurgery 11 Suppl 2 : 190- 199, 2015
  97. Ravikumar VK, Parker JJ, Hornbeck TS, Santini VE, Pauly KB, Wintermark M, et al. : Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor. Mov Disord 32 : 1165-1173, 2017 https://doi.org/10.1002/mds.26997
  98. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ : Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. PLoS One 3 : e2175, 2008 https://doi.org/10.1371/journal.pone.0002175
  99. Reher P, Doan N, Bradnock B, Meghji S, Harris M : Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine 11 : 416-423, 1999 https://doi.org/10.1006/cyto.1998.0444
  100. Rezayat E, Toostani IG : A review on brain stimulation using low intensity focused ultrasound. Basic Clin Neurosci 7 : 187-194, 2016
  101. Scarcelli T, Jordao JF, O'Reilly MA, Ellens N, Hynynen K, Aubert I : Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul 7 : 304-307, 2014 https://doi.org/10.1016/j.brs.2013.12.012
  102. Schlesinger I, Eran A, Sinai A, Erikh I, Nassar M, Goldsher D, et al. : MRI guided focused ultrasound thalamotomy for moderate-to-severe tremor in Parkinson's disease. Parkinsons Dis 2015 : 219149, 2015
  103. Scoville WB : Selective cortical undercutting as a means of modifying and studying frontal lobe function in man; preliminary report of 43 operative cases. J Neurosurg 6 : 65-73, 1949 https://doi.org/10.3171/jns.1949.6.1.0065
  104. Sheikov N, McDannold N, Sharma S, Hynynen K : Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34 : 1093-1104, 2008 https://doi.org/10.1016/j.ultrasmedbio.2007.12.015
  105. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K : Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30 : 979-989, 2004 https://doi.org/10.1016/j.ultrasmedbio.2004.04.010
  106. Shung KK, Smith M, Tsui BMW : Principles of Medical Imaging. Oxford : Elsevier Science, 1992
  107. Siegel KL, Metman LV : Effects of bilateral posteroventral pallidotomy on gait of subjects with Parkinson disease. Arch Neurol 57 : 198-204, 2000 https://doi.org/10.1001/archneur.57.2.198
  108. Sillay KA, Larson PS, Starr PA : Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery 62 : 360-366; discussion 366-367, 2008 https://doi.org/10.1227/01.neu.0000316002.03765.33
  109. Sprawls P : Physical Principles of Medical Imaging. Rockville : Aspen, 1987
  110. Szabo T : Diagnostic Ultrasound Imaging Inside Out. Amsterdam : Elsevier Academic, 2004
  111. Tasker RR : Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49 : 145-153; discussion 153-154, 1998 https://doi.org/10.1016/S0090-3019(97)00459-X
  112. ter Haar G : Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93 : 111-129, 2007 https://doi.org/10.1016/j.pbiomolbio.2006.07.005
  113. Thevenot E, Jordao JF, O'Reilly MA, Markham K, Weng YQ, Foust KD, et al. : Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 23 : 1144-1155, 2012 https://doi.org/10.1089/hum.2012.013
  114. Timbie KF, Afzal U, Date A, Zhang C, Song J, Wilson Miller G, et al. : MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release 263 : 120-131, 2017 https://doi.org/10.1016/j.jconrel.2017.03.017
  115. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K : Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121 : 901-907, 2007 https://doi.org/10.1002/ijc.22732
  116. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K : Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38 : 1716-1725, 2012 https://doi.org/10.1016/j.ultrasmedbio.2012.04.015
  117. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, et al. : Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66 : 681-694, 2010 https://doi.org/10.1016/j.neuron.2010.05.008
  118. Tyler WJ : Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17 : 25-36, 2011 https://doi.org/10.1177/1073858409348066
  119. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C : Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 3 : e3511, 2008 https://doi.org/10.1371/journal.pone.0003511
  120. Vykhodtseva N, McDannold N, Hynynen K : Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics 48 : 279-296, 2008 https://doi.org/10.1016/j.ultras.2008.04.004
  121. Vykhodtseva NI, Hynynen K, Damianou C : Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21 : 969-979, 1995 https://doi.org/10.1016/0301-5629(95)00038-S
  122. Wei KC, Chu PC, Wang HY, Huang CY, Chen PY, Tsai HC, et al. : Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS One 8 : e58995, 2013 https://doi.org/10.1371/journal.pone.0058995
  123. Weigel R, Krauss JK : Center median-parafascicular complex and pain control. Review from a neurosurgical perspective. Stereotact Funct Neurosurg 82 : 115-126, 2004 https://doi.org/10.1159/000079843
  124. Yang FY, Wong TT, Teng MC, Liu RS, Lu M, Liang HF, et al. : Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release 160 : 652-658, 2012 https://doi.org/10.1016/j.jconrel.2012.02.023
  125. Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, et al. : Facilitated brain delivery of poly (ethylene glycol)-poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials 35 : 3384-3395, 2014 https://doi.org/10.1016/j.biomaterials.2013.12.043
  126. Young RF, Vermeulen SS, Grimm P, Posewitz AE, Jacques DB, Rand RW, et al. : Gamma Knife thalamotomy for the treatment of persistent pain. Stereotact Funct Neurosurg 64 Suppl 1 : 172-181, 1995 https://doi.org/10.1159/000098777
  127. Yu H, Neimat JS : The treatment of movement disorders by deep brain stimulation. Neurotherapeutics 5 : 26-36, 2008 https://doi.org/10.1016/j.nurt.2007.10.072
  128. Zaaroor M, Sinai A, Goldsher D, Eran A, Nassar M, Schlesinger I : Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson's disease and essential tremor cases. J Neurosurg 128 : 202-210, 2018 https://doi.org/10.3171/2016.10.JNS16758

Cited by

  1. Corticostriatal functional connectivity of bothersome tinnitus in single-sided deafness vol.9, 2019, https://doi.org/10.1038/s41598-019-56127-1
  2. Neuromodulation and ablation with focused ultrasound - toward the future of noninvasive brain therapy vol.14, pp.9, 2019, https://doi.org/10.4103/1673-5374.255961
  3. Novel therapeutics for brain tumors: current practice and future prospects vol.17, pp.1, 2019, https://doi.org/10.1080/17425247.2019.1676227
  4. Transcranial Pulse Stimulation with Ultrasound in Alzheimer's Disease—A New Navigated Focal Brain Therapy vol.7, pp.3, 2019, https://doi.org/10.1002/advs.201902583
  5. The effect of thermal therapy on the blood-brain barrier and blood-tumor barrier vol.37, pp.2, 2020, https://doi.org/10.1080/02656736.2020.1783461
  6. Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound with a 1.5 Tesla Scanner: A Prospective Intraindividual Comparison Study of Intraoperative Imaging vol.11, pp.1, 2021, https://doi.org/10.3390/brainsci11010046
  7. Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance vol.2021, 2019, https://doi.org/10.1155/2021/6664453
  8. Comprehensive Evaluation of Factors Affecting Tremor Relapse after MRgFUS Thalamotomy: A Case-Control Study vol.11, pp.9, 2021, https://doi.org/10.3390/brainsci11091183
  9. A Network-Based Approach to Glioma Surgery: Insights from Functional Neurosurgery vol.13, pp.23, 2021, https://doi.org/10.3390/cancers13236127
  10. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices vol.55, pp.2, 2019, https://doi.org/10.1002/jmri.27446