DOI QR코드

DOI QR Code

MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

  • Ha, Tai-You (Department of Immunology, Chonbuk National University Medical School)
  • Received : 2011.07.28
  • Accepted : 2011.09.06
  • Published : 2011.10.31

Abstract

MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of miRNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

Keywords

References

  1. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75;843-854, 1993. https://doi.org/10.1016/0092-8674(93)90529-Y
  2. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75;855-862, 1993. https://doi.org/10.1016/0092-8674(93)90530-4
  3. O'Connell RM, Rao DS, Chaudhuri AA, Blatimore D: Physiological and pathological roles of microRNAs in the immune system. Nat Rev Immunol 10;111-122, 2010. https://doi.org/10.1038/nri2708
  4. Bartel DP: MicroRNAs: Genomics, biogenesis, mechanims, and funtion. Cell 116;281-297, 2004. https://doi.org/10.1016/S0092-8674(04)00045-5
  5. Tili E, Michaille JJ, Calin GA: Expression and function of microRNAs in immune cells during normal or disease state. Int J Med Sci 5;73-79, 2008.
  6. Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466;835-840, 2010. https://doi.org/10.1038/nature09267
  7. Perera RJ, Ray A: MicroRNAs in the search for understanding human diseases. BioDrugs 21;97-104, 2007. https://doi.org/10.2165/00063030-200721020-00004
  8. O'Neill LA, Sheedy FJ, McCoy CE: MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11;163-175, 2011. https://doi.org/10.1038/nri2957
  9. Ha TY: The role of microRNAs in regulatory T cells and in the immune response. Immune Netw 11;11-41, 2011. https://doi.org/10.4110/in.2011.11.1.11
  10. Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11;228-234, 2009. https://doi.org/10.1038/ncb0309-228
  11. Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10;126-139, 2009. https://doi.org/10.1038/nrm2632
  12. Kim VN: Small RNAs: classification, biogenesis, and function. Mol Cells 19;1-15, 2005. https://doi.org/10.1016/j.molcel.2005.05.026
  13. Boyd SD: Everything you wanted to know about small RNA but were afraid to ask. Lab Invest 88;569-578, 2008. https://doi.org/10.1038/labinvest.2008.32
  14. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res 14;1902-1910, 2004. https://doi.org/10.1101/gr.2722704
  15. Sonkoly E, Pivarcsi A: Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 13;24-38, 2009.
  16. Tomankova T, Petrek M, Kriegova E: Involvement of microRNAs in physiological and pathological processes in the lung. Respir Res 11;159, 2010. https://doi.org/10.1186/1465-9921-11-159
  17. Pallante P, Visone R, Croce CM, Fusco A: Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer 17;F91-104, 2010. https://doi.org/10.1677/ERC-09-0217
  18. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103;2257-2261, 2006. https://doi.org/10.1073/pnas.0510565103
  19. Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 6;857-866, 2006. https://doi.org/10.1038/nrc1997
  20. Ha TY: MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw 11;135-154, 2011. https://doi.org/10.4110/in.2011.11.3.135
  21. Belver L, de Yebenes VG, Ramiro AR: MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33; 713-722, 2010. https://doi.org/10.1016/j.immuni.2010.11.010
  22. Lu LF, Liston A: MicroRNA in the immune system, micro- RNA as an immune system. Immunology 127;291-298, 2009. https://doi.org/10.1111/j.1365-2567.2009.03092.x
  23. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID: Systems biology in immunology: a computational modeling perspective. Ann Rev Immunol 29;527-585, 2011. https://doi.org/10.1146/annurev-immunol-030409-101317
  24. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of human microRNA and disease associations. PLoS One 3;e3420, 2008. https://doi.org/10.1371/journal.pone.0003420
  25. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C: Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123;282-291, 2011. https://doi.org/10.1161/CIRCULATIONAHA.110.952325
  26. Tili E, Michaille JJ, Costinean S, Croce CM: MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol 4;534-41, 2008.
  27. De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E, Gavioli R, Negrini M, Furlan R, Granieri E: Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226;165-171, 2010. https://doi.org/10.1016/j.jneuroim.2010.06.009
  28. Leeper NJ, Cooke JP: MicroRNA and mechanisms of impaired angiogenesis in diabetes mellitus. Circulation 123; 236-238, 2011. https://doi.org/10.1161/CIRCULATIONAHA.110.003855
  29. Pandey AK, Agarwal P, Kaur K, Datta M: MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23; 221-232, 2009. https://doi.org/10.1159/000218169
  30. Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, Colombo T, Citarella F, Barnaba V, Minisola G, Galeazzi M, Macino G: miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71;206-211, 2010. https://doi.org/10.1016/j.humimm.2009.11.008
  31. Buckner JH: Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10;849-859, 2010. https://doi.org/10.1038/nri2889
  32. Yi R, Fuchs E: MicroRNA-mediated control in the skin. Cell Death Differ 17;229-235, 2010. https://doi.org/10.1038/cdd.2009.92
  33. Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA: The role of microRNA-146a (miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility. Scand J Immunol 71;382-385, 2010. https://doi.org/10.1111/j.1365-3083.2010.02381.x
  34. Miller BH, Wahlestedt C: MicroRNA dysregulation in psychiatric disease. Brain Res 1338;89-99, 2010. https://doi.org/10.1016/j.brainres.2010.03.035
  35. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R Jr, Chen A, Hornstein E: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107;13111-13116, 2010. https://doi.org/10.1073/pnas.1006151107
  36. Maes OC, Chertkow HM, Wang E, Schipper HM: MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Curr Genomics 10;154-168, 2009. https://doi.org/10.2174/138920209788185252
  37. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ: Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17;1156-1168, 2008. https://doi.org/10.1093/hmg/ddn005
  38. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28;1213-1223, 2008. https://doi.org/10.1523/JNEUROSCI.5065-07.2008
  39. Liston A, Linterman M, Lu LF: MicroRNA in the adaptive immune system, in sickness and in health. J Clin Immunol 30;339-346, 2010. https://doi.org/10.1007/s10875-010-9378-5
  40. Schetter AJ, Heegaard NH, Harris CC: Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31;37-49, 2010. https://doi.org/10.1093/carcin/bgp272
  41. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG: microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107;8231-8236, 2010. https://doi.org/10.1073/pnas.1002080107
  42. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17;211-215, 2011. https://doi.org/10.1038/nm.2284
  43. Navarro A, Gaya A, Martinez A, Urbano-Ispizua A, Pons A, Balague O, Gel B, Abrisqueta P, Lopez-Guillermo A, Artells R, Montserrat E, Monzo M: MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111;2825-2832, 2008. https://doi.org/10.1182/blood-2007-06-096784
  44. Small EM, Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature 469;336-342, 2011. https://doi.org/10.1038/nature09783
  45. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q: Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31;659-666, 2010. https://doi.org/10.1093/eurheartj/ehq013
  46. Contu R, Latronico MV, Condorelli G: Circulating micro- RNAs as potential biomarkers of coronary artery disease: a promise to be fulfilled? Circ Res 107;573-574, 2010. https://doi.org/10.1161/CIRCRESAHA.110.227983
  47. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D: miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208;549-560, 2011. https://doi.org/10.1084/jem.20101547
  48. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman- Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C: Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81;829-834, 2007. https://doi.org/10.1086/521200
  49. Mattes J, Collison A, Plank M, Phipps S, Foster PS: Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 106;18704-18709, 2009. https://doi.org/10.1073/pnas.0905063106
  50. Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, Benham AL, Kim J, Soibam B, Harris RA, Coarfa C, Zariff A, Milosavljevic A, Batts LM, Kheradmand F, Gunaratne PH, Corry DB: Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem 285; 30139-30149, 2010. https://doi.org/10.1074/jbc.M110.145698
  51. Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG: MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84;3023-3032, 2010. https://doi.org/10.1128/JVI.02203-09
  52. Witwer KW, Sisk JM, Gama L, Clements JE: MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184;2369-2376, 2010. https://doi.org/10.4049/jimmunol.0902712
  53. Belair C, Darfeuille F, Staedel C: Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 15;806-812, 2009. https://doi.org/10.1111/j.1469-0691.2009.02960.x
  54. Liu X, Wang T, Wakita T, Yang W: Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus- infected human hepatoma cells. Virology 398;57-67, 2010. https://doi.org/10.1016/j.virol.2009.11.036
  55. Zhang GL, Li YX, Zheng SQ, Liu M, Li X, Tang H: Suppression of hepatitis B virus replication by microRNA- 199a-3p and microRNA-210. Antiviral Res 88;169-175, 2010. https://doi.org/10.1016/j.antiviral.2010.08.008
  56. Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY: Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 205;1993-2004, 2008. https://doi.org/10.1084/jem.20081062
  57. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA: Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205; 1983-1991, 2008. https://doi.org/10.1084/jem.20080707
  58. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med 203;2519-2527, 2006. https://doi.org/10.1084/jem.20061692
  59. Ha TY: Regulatory T cell therapy for autoimmune disease. Immune Netw 8;107-123, 2008. https://doi.org/10.4110/in.2008.8.4.107
  60. Pauley KM, Cha S, Chan EK: MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32;189-194, 2009. https://doi.org/10.1016/j.jaut.2009.02.012
  61. Dalal SR, Kwon JH: The role of MicroRNA in inflammatory bowel disease. Gastroenterol Hepatol (N Y) 6;714-722, 2010.
  62. Song L, Tuan RS: MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today 78;140-149, 2006. https://doi.org/10.1002/bdrc.20070
  63. Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG: MicroRNAs and the skin: tiny players in the body's largest organ. J Dermatol Sci 53;169-175, 2009. https://doi.org/10.1016/j.jdermsci.2008.10.004
  64. Nelson PT, Wang WX, Rajeev BW: MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18;130-138, 2008. https://doi.org/10.1111/j.1750-3639.2007.00120.x
  65. Martino S, di Girolamo I, Orlacchio A, Datti A, Orlacchio A: MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009: Article ID 654346, 13 pages, 2009.
  66. Hunsberger JG, Austin DR, Chen G, Manji HK: MicroRNAs in mental health: from biological underpinnings to potential therapies. Neuromolecular Med 11;173-182, 2009. https://doi.org/10.1007/s12017-009-8070-5
  67. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317;1220-1224, 2007. https://doi.org/10.1126/science.1140481
  68. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28;14341-14346, 2008. https://doi.org/10.1523/JNEUROSCI.2390-08.2008
  69. Garofalo M, Condorelli G, Croce CM: MicroRNAs in diseases and drug response. Curr Opin Pharmacol 8;661-667, 2008. https://doi.org/10.1016/j.coph.2008.06.005
  70. Chang S, Wen S, Chen D, Jin P: Small regulatory RNAs in neurodevelopmental disorders. Hum Mol Genet 18;R18-26, 2009. https://doi.org/10.1093/hmg/ddp072
  71. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS 4th, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW: Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310;317-320, 2005. https://doi.org/10.1126/science.1116502
  72. Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, Schmittgen TD, Terry AV Jr, Gardiner K, Head E, Feldman DS, Elton TS: Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 370;473-477, 2008. https://doi.org/10.1016/j.bbrc.2008.03.120
  73. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM: microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8; R27, 2007. https://doi.org/10.1186/gb-2007-8-2-r27
  74. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ: Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15;1176-1189, 2010. https://doi.org/10.1038/mp.2009.84
  75. Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y, Zhang J, Zhang J, Fu X, Liu H, Lu L, Wu Y: Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12;R81, 2010. https://doi.org/10.1186/ar3006
  76. Sheedy FJ, O'Neill LA: Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis 67(Suppl 3);iii50-55, 2008. https://doi.org/10.1136/ard.2008.100289
  77. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK: Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10;R101, 2008. https://doi.org/10.1186/ar2493
  78. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara H: Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58;1284-1292, 2008. https://doi.org/10.1002/art.23429
  79. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D: Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58;1001-1009, 2008. https://doi.org/10.1002/art.23386
  80. Luo X, Tsai LM, Shen N, Yu D: Evidence for microRNAmediated regulation in rheumatic diseases. Ann Rheum Dis 69(Suppl 1);i30-36, 2010. https://doi.org/10.1136/ard.2009.117218
  81. Chan EK, Satoh M, Pauley KM: Contrast in aberrant microRNA expression in systemic lupus erythematosus and rheumatoid arthritis: is microRNA-146 all we need? Arthritis Rheum 60;912-915, 2009. https://doi.org/10.1002/art.24421
  82. Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB: Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16;939-946, 2007. https://doi.org/10.1177/0961203307084158
  83. Divekar AA, Dubey S, Gangalum PR, Singh RR: Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 186;924-930, 2011. https://doi.org/10.4049/jimmunol.1002218
  84. Mellor AL, Munn DH: Physiologic control of the functional status of Foxp3+ regulatory T cells. J Immunol 186;4535-4540, 2011. https://doi.org/10.4049/jimmunol.1002937
  85. Gauthier BR, Wollheim CB: MicroRNAs: 'ribo-regulators' of glucose homeostasis. Nat Med 12;36-38, 2006. https://doi.org/10.1038/nm0106-36
  86. Hezova R, Slaby O, Faltejskova P, Mikulkova Z, Buresova I, Raja KR, Hodek J, Ovesna J, Michalek J: MicroRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260;70-74, 2010. https://doi.org/10.1016/j.cellimm.2009.10.012
  87. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP, Ruprecht K, Meese E: Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4;e7440, 2009. https://doi.org/10.1371/journal.pone.0007440
  88. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G: MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10;1252-1259, 2009. https://doi.org/10.1038/ni.1798
  89. Schrempf W, Ziemssen T: Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev 6;469-475, 2007. https://doi.org/10.1016/j.autrev.2007.02.003
  90. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30;80-91, 2009.
  91. Miller RL, Ho SM: Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 177;567-573, 2008. https://doi.org/10.1164/rccm.200710-1511PP
  92. Lu TX, Munitz A, Rothenberg ME: MicroRNA-21 is upregulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182;4994-5002, 2009. https://doi.org/10.4049/jimmunol.0803560
  93. Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Ståhle M, Pivarcsi A: MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2;e610, 2007. https://doi.org/10.1371/journal.pone.0000610
  94. Sonkoly E, Stahle M, Pivarcsi A: MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol 33;312-315, 2008. https://doi.org/10.1111/j.1365-2230.2008.02804.x
  95. Wu F, Guo NJ, Tian H, Marohn M, Gearhart S, Bayless TM, Brant SR, Kwon JH: Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 17;241-250, 2011. https://doi.org/10.1002/ibd.21450
  96. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, Brant SR, Chakravarti S, Kwon JH: MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 135;1624-1635, 2008. https://doi.org/10.1053/j.gastro.2008.07.068
  97. Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, Brant SR, Kwon JH: Identification of microRNAs associated with ileal and colonic Crohn's disease. Inflamm Bowel Dis 16;1729-1738, 2010. https://doi.org/10.1002/ibd.21267
  98. Saito Y, Suzuki H, Hibi T: The role of microRNAs in gastrointestinal cancers. J Gastroenterol 44(Suppl 19);18-22, 2009. https://doi.org/10.1007/s00535-008-2285-3
  99. Sen CK, Gordillo GM, Khanna S, Roy S: Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 46;527-540, 2009. https://doi.org/10.1159/000226221
  100. Liu J, Drescher KM, Chen XM: MicroRNAs and Epithelial Immunity. Int Rev Immunol 28;139-154, 2009. https://doi.org/10.1080/08830180902943058
  101. Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, Xu N, Meisgen F, Wei T, Bradley M, Stenvang J, Kauppinen S, Alenius H, Lauerma A, Homey B, Winqvist O, Stahle M, Pivarcsi A: MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte- associated antigen 4. J Allergy Clin Immunol 126; 581-589, 2010. https://doi.org/10.1016/j.jaci.2010.05.045
  102. Roshan R, Ghosh T, Scaria V, Pillai B: MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov Today 14;1123-1129, 2009. https://doi.org/10.1016/j.drudis.2009.09.009
  103. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T: Epigenetic silencing of micro- RNA- 34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68;123-132, 2008.
  104. Hebert SS, De Strooper B: Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32;199-206, 2009.
  105. Provost P: MicroRNAs as a molecular basis for mental retardation, Alzheimer's and prion diseases. Brain Res 1338; 58-66, 2010. https://doi.org/10.1016/j.brainres.2010.03.069
  106. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B: Loss of microRNA cluster miR- 29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105;6415-6420, 2008. https://doi.org/10.1073/pnas.0710263105
  107. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerrire A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D: APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38;24-26, 2006. https://doi.org/10.1038/ng1718
  108. Burmistrova OA, Goltsov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev EI: MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry(Mosc) 72;578-582, 2007.
  109. Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I, Hall H, Timm S, Wang AG, Werge T: Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2;e873, 2007. https://doi.org/10.1371/journal.pone.0000873
  110. Guo AY, Sun J, Jia P, Zhao Z: A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol 4;10, 2010. https://doi.org/10.1186/1752-0509-4-10
  111. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D: Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 40;47-55, 2010. https://doi.org/10.1007/s12031-009-9252-1
  112. Radom-Aizik S, Zaldivar F Jr, Oliver S, Galassetti P, Cooper DM: Evidence for microRNA involvement in exercise- associated neutrophil gene expression changes. J Appl Physiol 109;252-261, 2010. https://doi.org/10.1152/japplphysiol.01291.2009

Cited by

  1. Crosstalk among Epigenetic Pathways Regulates Neurogenesis vol.6, pp.None, 2011, https://doi.org/10.3389/fnins.2012.00059
  2. Mesenchymal Stem Cells Deliver Exogenous miRNAs to Neural Cells and Induce Their Differentiation and Glutamate Transporter Expression vol.23, pp.23, 2014, https://doi.org/10.1089/scd.2014.0146
  3. Early MicroRNA Expression Profile as a Prognostic Biomarker for the Development of Pelvic Inflammatory Disease in a Mouse Model of Chlamydial Genital Infection vol.5, pp.3, 2014, https://doi.org/10.1128/mbio.01241-14
  4. Human Hair Reconstruction: Close, But Yet So Far vol.25, pp.23, 2011, https://doi.org/10.1089/scd.2016.0137
  5. miRNAs Plasma Profiles in Vascular Dementia: Biomolecular Data and Biomedical Implications vol.10, pp.None, 2011, https://doi.org/10.3389/fncel.2016.00051
  6. Circulating MicroRNAs as Potential Biomarkers of Exercise Response vol.17, pp.10, 2011, https://doi.org/10.3390/ijms17101553
  7. The correlation between miR-200c and the severity of interstitial lung disease associated with different connective tissue diseases vol.46, pp.2, 2017, https://doi.org/10.3109/03009742.2016.1167950
  8. MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice vol.85, pp.1, 2011, https://doi.org/10.1128/iai.00768-16
  9. Overexpression of miR-155 in clear-cell renal cell carcinoma and its oncogenic effect through targeting FOXO3a vol.13, pp.5, 2017, https://doi.org/10.3892/etm.2017.4263
  10. Overexpression of Drosha, DiGeorge syndrome critical region gene 8 (DGCR8), and Dicer mRNAs in the pathogenesis of psoriasis vol.16, pp.4, 2011, https://doi.org/10.1111/jocd.12336
  11. Association of MIR137 With Symptom Severity and Cognitive Functioning in Belarusian Schizophrenia Patients vol.9, pp.None, 2018, https://doi.org/10.3389/fpsyt.2018.00295
  12. Identification of Candidate miRNA Biomarkers for Glaucoma vol.60, pp.1, 2019, https://doi.org/10.1167/iovs.18-24878
  13. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.581007
  14. MicroRNA-382-5p Targets Nuclear Receptor Subfamily 3 Group C Member 1 to Regulate Depressive-Like Behaviors Induced by Chronic Unpredictable Mild Stress in Rats vol.16, pp.None, 2011, https://doi.org/10.2147/ndt.s243920
  15. Genetic Variants in the 3’UTR of BRCA1 and BRCA2 Genes and Their Putative Effects on the microRNA Mechanism in Hereditary Breast and Ovarian Cancer vol.10, pp.5, 2011, https://doi.org/10.3390/diagnostics10050298
  16. Role of MICRORNAS in Staphylococcus aureus infection: Potential biomarkers and mechanism vol.72, pp.9, 2020, https://doi.org/10.1002/iub.2325
  17. Dietary alterations modulate the microRNA 29/30 and IGF-1/AKT signaling axis in breast Cancer liver metastasis vol.17, pp.1, 2020, https://doi.org/10.1186/s12986-020-00437-z
  18. MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos vol.11, pp.1, 2011, https://doi.org/10.3390/ani11010221
  19. Complex Conformational Dynamics of the Heart Failure-Associated Pre-miRNA-377 Hairpin Revealed by Single-Molecule Optical Tweezers vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169008
  20. Circulating miRNAs as Potential Biomarkers Distinguishing Relapsing-Remitting from Secondary Progressive Multiple Sclerosis. A Review vol.22, pp.21, 2011, https://doi.org/10.3390/ijms222111887