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Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. 
Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, 
including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, 
we focus on network-based approaches that help in understanding biological systems and identifying biological functions. 
Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and 
network-based applications, including protein function prediction, disease gene prioritization, and network-based genome- 
wide association study.
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Introduction

Network representations have been used to describe 
interactions between entities of interest in various areas. In 
particular, network representations are useful to analyze and 
visualize complex biological activities. Global patterns in a 
large-scale complex system can be shown by representing 
the entities and their interactions with nodes and edges, 
respectively. For instance, Schwikowski et al. [1] created 
protein-protein interaction (PPI) networks to predict novel 
protein functions in yeast Saccharomyces cerevisiae. By using 
the network representations, it was found that 2,358 among 
2,709 total interactions compose a single large network. 
Also, biological pathway databases, such as Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [2] and 
Reactome [3], provide numerous pathways that are repre-
sented by networks with nodes of molecules and directed 
edges of their actions. In addition, various mathematical 
properties and models of a network have been developed in 
graph theory. Several reviews [4-6] have illustrated the 
mathematical properties and topological characteristics of a 
network with biological systems.

The advance of high-throughput technologies, including 

DNA microarray [7], next-generation sequencing [8], and 
the two-hybrid screening system [9], has led to the large- 
scale datasets in genomics and proteomics, which are 
referred to as ‘omics’ data. These omics data have been 
collected and organized to identify biological functions. This 
paper focuses on biological network analysis related to omics 
data, such as gene expression levels and PPIs. We first report 
several major public interaction databases for the omics data 
and then introduce two major topics in network biology: 
reconstruction of gene regulatory networks (GRNs) and 
network-based applications, including protein function pre-
diction, disease gene prioritization, and network-based 
genome-wide association study.

Network Resources

 Experimental results from high-throughput technolo-
gies, such as the two-hybrid screening system for detecting 
interactions between biological molecules, have formed 
various types of network datasets that are released and 
updated in public databases on the web. These databases 
commonly enable web-based searches and provide raw 
datasets of pairs of molecules. In this review, we report 11 
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Database Type Species URL Reference

DroID Protein interaction Drosophila http://www.droidb.org [10]
MIPS Protein interaction/functional catalog Mammal http://mips.helmholtz-muenchen.de [11]
HPRD Protein interaction Human http://www.hprd.org [12]
BioGRID (GRID) Protein interaction No restriction http://thebiogrid.org [13, 14]
DIP Protein interaction No restriction http://dip.doe-mbi.ucla.edu/dip [15]
STRING Protein interaction No restriction http://string-db.org [16]
MINT Protein interaction No restriction http://mint.bio.uniroma2.it/mint [17]
IntAct Protein interaction No restriction http://www.ebi.ac.uk/intact [18]
Reactome Pathway/protein Interaction No restriction http://www.reactome.org [3]
TRED Transcriptional regulatory Human/mouse/rat http://rulai.cshl.edu/cgi-bin/TRED/tred.

cgi?process=home 
[19]

RegulonDB Transcriptional regulatory Escherichia coli K-12 http://regulondb.ccg.unam.mx/ [20]

Table 1. Public network resources

Method Approach Implementation URL

SPACE Gaussian graphical model C, R http://cran.r-project.org/web/packages/space
Graphical Lasso Gaussian graphical model Fortran, R http://cran.r-project.org/web/packages/glasso
CLIME Gaussian graphical model R http://cran.r-project.org/web/packages/clime
GeneNet Gaussian graphical model R http://cran.r-project.org/web/packages/GeneNet
B-Course Bayesian network Java http://b-course.cs.helsinki.fi
BNT Bayesian network Matlab http://code.google.com/p/bnt/
Werhli et al.’s BN Bayesian network Matlab http://www.bioss.ac.uk/people/adriano/comparison/

comparison.html#software
WGCNA Correlation C, R http://cran.r-project.org/web/packages/WGCNA
Relevance network Information theory Java http://www.newatlantictech.com/products.html
ARACNE Information theory C++, Java http://wiki.c2b2.columbia.edu/califanolab/index.php/

Software/ARACNE
CLR Information theory C, Matlab http://m3d.mssm.edu/network_inference.html
GTRNetwork Information theory Matlab http://www.biomedcentral.com/1471-2105/12/233
NARROMI Information theory Matlab http://csb.shu.edu.cn/narromi.htm

Table 2. Reconstruction methods for gene regulatory network

useful public databases for PPIs and transcriptional regu-
latory interactions (Table 1) [10-20]. For PPIs, BioGRID 
[13], MIPS [11], and STRING [16] are the most frequently 
used to predict protein functions for PPIs. BioGRID provides 
496,761 non-redundant PPIs for various species, ranging 
from yeast S. cerevisiae to human. On the other hand, MIPS 
not only provides mammalian PPIs but also offers the 
functional catalogs that contain descriptions of protein 
functions. Unlike BioGRID and MIPS, STRING contains 
identified and predicted functional interactions of proteins 
with functional similarity scores (i.e., STRING offers 
weighted networks). For transcriptional regulatory interac-
tions, transcriptional regulatory element database (TRED) 
[19] offers GRNs and transcriptional factors for three 
species; human, mouse, and rat. On the other hand, 
RegulonDB [20] contains both experimental datasets and 
computational prediction results of transcriptional regula-
tory interactions for the Escherichia coli K-12 organism.

Statistical Reconstruction of the Gene Re-
gulatory Network from Gene Expression 
Data

Biological networks are generally constructed using 
known interactions identified from previous experiments. 
To integrate these separate pieces of information in the 
literature, text mining methods [21-24] have been proposed 
and used in the majority of public databases explained in the 
previous section. Although most biological networks are 
based on identified interactions under many different condi-
tions and properties, GRNs can be constructed from gene 
expression datasets from a user’s experimental datasets that 
implicitly contain gene regulation information in specific 
conditions (e.g., disease-specific, tissue-specific, or drug- 
specific GRNs). Most recently, the Encyclopedia of DNA 
Elements (ENCODE) project [25] produced numerous 
RNA-sequencing (RNA-seq) datasets that can provide gene 
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expression levels and chromatin immunoprecipitation-se-
quencing (ChIP-seq) datasets that directly contain infor-
mation about transcription factors (TFs). Integrative me-
thods for reconstructing GRNs [26, 27] have been deve-
loped with the ENCODE [25] and modENCODE [28] 
project datasets. But, we focus on statistical approaches to 
reconstruct GRNs with gene expression datasets. Readers 
can refer to [26, 27] to read the details of reconstructing 
GRNs with ENCODE project datasets.

Many statistical approaches that infer networks from gene 
expression datasets have been developed. In this section, we 
briefly introduce four approaches to reconstruct GRNs: 
Gaussian graphical model, Bayesian network, correlation 
network, and information theory. Table 2 summarizes the 
methods described in this section with implementation 
languages and available URLs. A comparison study of several 
methods in these approaches has been published [29]. We 
remark that this review covers recent methods of the 
Gaussian graphical model and information theory appro-
aches.

Gaussian graphical model

To cover the basic principle behind the Gaussian graphic 
model, let G = (V, E) be an undirected graph with a set V of 
nodes and a set E of edges and X = (X1, X2, … , Xp ) = (X1, X2, 
…, Xn)T be an n × p dimensional design matrix, where Xj 
denotes a j-th variable and Xi denotes an i-th sample. In the 
Gaussian graphical model, it is assumed that an observation 
is from a p-dimensional multivariate normal distribution 
with mean zero and covariance matrix ∑ (i.e., Xi∼N(0, ∑) 
for i=1, 2,…, n). From this normality assumption, Xi and Xj 
are conditionally independent if (∑-1)ij = 0 [30]. With this 
property, the Gaussian graphical model represents a con-
ditional dependency between two variables into an edge (i.e., 
(i, j) ∈ E if (∑-1)ij ≠ 0). Thus, we can obtain a network 
structure by estimating the inverse of covariance matrix (∑-1), 
which is called a precision matrix. It is known that the 
maximum likelihood estimator (MLE) of the precision 
matrix is an inverse matrix of the sample covariance matrix. 
However, for high-dimensional data (p ＞ n), the MLE of the 
precision matrix can not be obtained from the sample 
covariance matrix, since the sample covariance matrix is 
singular.

To resolve this problem and obtain the sparse solution, 
l1-regularized methods have been developed. These methods 
can be categorized into four types: regression-based [31, 32], 
penalized likelihood [33-38], empirical Bayes [39], and 
constrained l1 minimization [40]. We briefly introduce a 
recently developed example for each type of method. First, 
the sparse partial correlation estimation (SPACE) method 
[32] jointly solves p regression problems with l1 norm 

penalty on partial correlations. SPACE performs well in the 
detection of hub nodes that have many connections with 
other nodes. Unlike regression based-methods, the penali-
zed likelihood-based methods directly maximize a likelihood 
function with positive definite constraints and l1 norm 
penalty on elements of the precision matrix. This maximi-
zation problem, proposed by [33], is more difficult to solve 
than the regression problem. To efficiently solve this 
problem, Friedman et al. [38] developed the graphical lasso 
algorithm that is motivated from [34, 35] and faster than 
other existing methods. In the empirical Bayes-based me-
thods, Schafer and Strimmer [39] proposed the GeneNet 
method, based on multiple testing procedure on the partial 
correlations estimated by the Moore-Penrose pseudo inverse 
and the bootstrap method. Finally, Cai et al. [40] recently 
proposed constrained l1-minimization for inverse matrix 
estimation (CLIME), which directly minimizes the l1-norm 
of the precision matrix with a constraint for relaxation of the 
precision matrix condition.

Bayesian network

A Bayesian network is a probabilistic framework for repre-
senting a directed acyclic graph (DAG) structure, while 
Gaussian graphical models consider undirected graph struc-
tures. With the structure of DAG, the joint probabilities can 
be explicitly calculated from a simple conditional distribu-
tion. To obtain the network structure, Bayesian network 
methods generally select the graph structure by following 
three steps. Step 1－a candidate DAG structure is chosen 
among all possible DAG structures. Step 2－the posterior 
probability of the candidate DAG structure, given the gene 
expression data, is calculated. Step 3－repeat steps 1 and 2 
until the highest posterior probability is obtained. Thus, 
searching candidate DAG structures becomes a critical part 
of the Bayesian network methods when the number of nodes 
increases. To avoid this problem, many heuristics are applied 
to improve efficiency [41-43]. For instance, B-Course [41], 
which is a web-based application, uses a combination of 
stochastic and greedy search, and BNT [42] and Werhli’s 
Bayesian network [43] adopt Markov Chain Monte Carlo 
(MCMC) methods to find the best network structure for 
given gene expression data. 

Correlation network

Correlation networks represent pairwise correlations 
between two nodes into edges. Although the construction of 
correlation networks can be straightforward to obtain from 
Pearson’s correlations, it leads to a problem－that all the 
edges in the network are connected, since these correlations 
are generally non-zero. Thus, it is required that meaningless 
relationships in the correlation network be removed to focus 

http://www.genominfo.org


www.genominfo.org 203

Genomics & Informatics Vol. 11, No. 4, 2013

on important edges that highly correlate nodes. To remedy 
this problem, hard thresholds [44] or soft thresholds [45] 
are applied to Pearson’s correlations. By using threshold 
cutoffs, correlation network methods can capture biolo-
gically meaningful relationships. Moreover, this represen-
tation, based on correlations, is useful not only to identify 
modules of genes but also to interpret regulation interac-
tions. “WGCNA” [46], an R implemented package, is an 
example that makes use of correlation networks. WGCNA 
provides the construction of unweighted (or weighted) 
networks with hard and soft threshold schemes [44, 45]. In 
addition, WGCNA offers various functions to analyze the 
network, including module detection, calculation of topo-
logical properties, and visualization. 

Information theory

Information theory-based methods construct the GRN, 
based on information theoretic scores, such as the mutual 
information (MI), to measure dependencies between varia-
bles [47-50]. Unlike correlations, the MI does not assume 
the linearity and the continuity of variables. Thus, infor-
mation theory-based methods generally outperform other 
methods that are based on correlation coefficients when the 
true network structure contains non-linearity dependencies. 
We first review two popular methods that reconstruct GRNs 
based on MI values and then introduce recently developed 
methods.

The relevance network method [47] uses the MI values to 
determine the edges in the GRN. To select significant edges, 
the relevance network proposes a threshold rule based on 
the distribution of the permuted MI values. The maximum 
value of the average of the permuted MI values is considered 
the threshold value. On the other hand, ARACNE [48, 49] 
additionally takes into account data processing inequality 
(DPI), in which the MI value of an indirect interaction is less 
than or equal to each MI value of the direct interactions for 
all triplets of nodes that only have two direct interactions. 
This DPI enforces that ARACNE [48, 49] discards indirect 
interactions and some direct interactions with small MI 
values.

To improve the accuracy of the information theory-based 
methods, the context likelihood of relatedness (CLR) 
algorithm [50] and the gene expression and transcription 
factor activity-based relevance network (GTRNetwork) 
algorithm [51] have been developed. These methods focus 
on the transcriptional regulatory interactions between 
known TFs and their target genes. Instead of using the MI 
values directly, the CLR algorithm proposes a likelihood 
value based on z-scores derived from the empirical distri-
bution of the MI values in order to adjust random noises in 
the MI values. In addition to the CLR algorithm, the 

GTRNetwork algorithm additionally considers transcription 
factor activities (TFAs) between TFs and target genes as a 
hidden layer. The GTRNetwork algorithm first estimates 
changes of TFAs with known TF-gene networks and then 
identifies transcriptional regulatory interactions between 
the estimated TFAs and genes with the CLR algorithm. More 
recently, Zhang et al. [52] described the transcription 
procedure with TFAs by using the ordinary differential 
equation. Unlike the GTRNetwork algorithm, the NAR-
ROMI algorithm considers the gene expression data for 
candidate TFs as the TFAs and solves the minimization of 
the absolute errors between inferred and observed expres-
sions with l1-norm penalty on the strength coefficients, 
which is referred to as recursive optimization in [52]. The 
NARROMI algorithm proposes the linear combination of 
the MI values and the absolute values of estimated strength 
coefficients as the final scores to construct the GRN.

Network-Based Applications

From the advances of high-throughput technologies, 
large-scale networks have been identified and are available 
from various public databases, as summarized in Table 1. In 
this section, we focus on network-based applications, es-
pecially how to use previously identified network resources 
in order to obtain meaningful biological interpretations. We 
first introduce three basic concepts in graph theory [53] to 
give an overview of the basic concepts of the network-based 
methods. First, a neighborhood of a node is a set of nodes 
connected to the node. Second, the distance between two 
nodes is defined as a length of the shortest path between 
them if the path exists; otherwise, it is set to infinity. Finally, 
an adjacency matrix is a binary and symmetric matrix such that 
its ij-th element is equal to 1 if there is an edge from a node 
i to a node j; otherwise, it is 0. In some cases, a weighted 
adjacency matrix can be used to represent the strengths of 
edges that usually fall between 0 and 1. With these basic 
concepts, we introduce three network-based applications: 
protein function prediction, disease gene prioritization, and 
genome-wide association study.

Protein function prediction

With the results of sequencing genomes, the efforts to 
predict protein functions have been focused on the functio-
nalities of genomic annotations. In the initial stage, the 
prediction of protein function begins with the sequence 
homologies to annotated proteins [54-57]. These methods 
have been successful, but 70% of proteins still remain 
unannotated [58]. Accordingly, various types of methods 
have been developed to characterize unannotated proteins. 
In this review, we introduce four approaches in protein 
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Approach Method Data resource Reference

Neighborhood-based Neighbor counting YPD [59], MIPS [11], CuraGen [60], Ito et al. [61] Schwikowski et al. [1]
χ2 statistic YPD [59], MIPS [11], CuraGen [60], Ito et al. [61] Hishigaki et al. [62]
Functional similarity MIPS [11], GRID [14] Chua et al. [63]
Protein similarity/ 
 functional similarity

BioGRID [13], GO [64] Chi and Hou [65]

Graph-based Label assignment YPD [59], MIPS [11], CuraGen [60], Ito et al. [61] Vazquez et al. [66]
Label assignment GRID [14], GO [64] Karaoz et al. [67]
Functional flow GRID [14], MIPS [11], GO [64] Nabieva et al. [68]
Label propagation MIPS [11] Tsuda et al. [69]
Label propagation MIPS [11], GO [64] Mostafavi et al. [70]
SLNP GRID [14], MIPS [11], GO [64] Wang and Li [71]
NRC DIP [15], GO [64] Moosavi et al. [72]

Bayesian MRF YPD [59], MIPS [11], SGD [73], GO [64] Deng et al. [74, 75]
BMRF Collins et al. [76], GO [64] Kourmpetis et al. [77]
Posterior probability GRID [14], MIPS [11], SGD [73] Nariai et al. [78]
HBNM BioGRID [13], GO [64] Jiang et al. [79]
Auto-probit model STRING [16], GO [64] Jiang et al. [80]

Kernel-based SVM MIPS [11] Lanckriet et al. [81]
KLR MIPS [11], SGD [73], GO [64] Lee et al. [82]
FCML BioGRID [13], MIPS [11], GO [64] Wang et al. [83]

Table 3. Network-based protein function prediction methods

function prediction, based on direct interactions in the 
network: neighborhood-based, graph-based, Bayesian, and 
Kernel-based approaches. The methods are summarized in 
Table 3 [10, 11, 13-16, 59-83].

In neighborhood-based approach, the proposed methods 
[1, 62, 63, 65] commonly consider the number of edges con-
nected to annotated proteins in a neighborhood. The neigh-
borhood counting method [1] only takes into account the 
frequencies of annotated proteins in the neighborhood and 
chooses the top three functions, with the calculated frequen-
cies ranked in descending order for each protein. Other 
methods also have derived their own scores, such as χ2 
statistics [62] and functional similarities [63, 65], based on 
the annotated protein information in the neighborhood. 
These methods choose a function with the highest score as a 
predicted function for each protein.

The graph-based approach is similar to the neighborhood- 
based approach, but the graph-based approach focuses more 
on how to label the unannotated proteins with graph 
theoretical properties, such as the distance and the adjacency 
matrix. The label assignment models have been proposed 
with the adjacency matrix [66] and the weighted adjacency 
matrix [67], respectively. Since these assignment problems 
are computationally intractable, the heuristic methods, such 
as the simple threshold rule or simulated annealing [84], 
have been applied. To avoid these computational problems, 
several propagation-flavored methods have been developed. 
First, the label propagation methods [69, 70] obtain the 
optimal assignments and the optimal combination of the 

weight matrices that reflects different types of networks. 
Second, the functional flow method [68] iteratively spreads 
the flow from the annotated protein to the unannotated 
proteins by connected edges. The functional flow score, 
defined as an amount of the flow, is the criterion of the 
prediction. Third, the sequential linear neighborhood pro-
pagation method [71] sequentially updates unlabeled 
proteins according to their shortest path distance to the set 
of labeled proteins. Finally, the neighbor relativity coefficient 
(NRC) method [72] derives the NRC score by integrating 
various graph topological properties, such as the shortest 
path distance, path connectivity, and common neighbors. 

The Bayesian approach takes into account the posterior 
probabilities of binary label random variables to obtain the 
prediction from the observed network and annotated pro-
teins. Markov random field (MRF)-based [85] methods [74, 
75] have been proposed and modified to Bayesian MRF [77] 
recently. To predict protein functions, these methods com-
monly derive the marginal posterior probability of the binary 
label variable given other variables and then estimate the 
posterior probability by Gibbs sampling. In addition to MRF- 
based models, other probabilistic models [78-80] have been 
developed under hierarchical structures from gene ontology 
[64]－which provides gene product annotation data that are 
characterized into three categories: biological processes, 
cellular components, and molecular functions－with some 
models, such as the hierarchical binomial neighborhood 
model [79]. In particular, Jiang et al. [80] considered the 
auto-probit model with a weighted network information 
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Method Data resource Reference

Random walk OMIM [96], HPRD [12], BIND [97], BioGRID [13], IntAct [18], DIP [15], STRING [16] Kohler et al. [91]
CIPHER OMIM [96], HPRD [12], OPHID [98], BIND [97], MINT [17] Wu et al. [92]
PRINCE OMIM [96], GO [64], HPRD [12], GeneCards [99] Vanunu et al. [93]
MINProp OMIM [96], HPRD [12], OPHID [98], BIND [97], MINT [17] Hwang and Kuang [94]

Table 4. Network-based disease gene prioritization methods

from STRING [16], and their auto-probit model also reflects 
the uncertainty of the annotation [64].

The Kernel-based approach considers the protein function 
prediction problem as a classification problem. To reflect 
network information into the classification state, the 
network information is converted into a kernel matrix. 
Lanckriet et al. [81] proposed the kernel-based support 
vector machine (SVM) method, which incorporates hetero-
geneous types of data, such as amino acid sequence, gene 
expression data, and PPI network data, by converting these 
data into kernel matrices. The SVM method can be refor-
mulated as semi-definite programming (SDP) [86] with 
kernels. Although the SVM method performs well, this 
method becomes slow when the dimension increases, 
caused by the computational complexity of the SDP. To 
remedy this problem, Lee et al. [82] proposed the kernel- 
based logistic regression (KLR) method by combing MRF- 
based methods [74, 75] with the diffusion kernel [87]. The 
KLR can contain multiple functions and various types of 
datasets at once. It has been shown that the KLR method is 
faster than the SVM and is comparable to the SVM in 
prediction accuracy [82]. Recently, Wang et al. [83] proposed 
the function-function correlated multi-label method, which 
treats all function categories in the prediction at once, while 
other methods only consider one function at a time, except 
for KLR.

Disease gene prioritization

  Disease-gene association studies have focused on 
identifying relationships between disease phenotypes and 
genes to reveal and understand human disease mechanisms. 
Although traditional approaches, including linkage analysis 
and association studies, have been successful, the specified 
genomic intervals often contain tens or even hundreds of 
genes. It may not be possible by experiments to identify the 
correct causative genes of all the genes that lie on the 
specified intervals. To reduce experimental costs and efforts, 
the prioritization of candidate genes becomes one of the 
major tasks in disease-gene association studies.

Taking into consideration that genes corresponding to 
similar disease phenotypes tend to be neighbors in either a 
PPI network [88, 89] or a pathway [90], several network- 
based disease gene prioritization methods have been pro-

posed recently. The network-based disease gene prioriti-
zation methods [91-94] define different similarity scores 
between the disease and genes, based on either functional 
annotations or PPI networks, to rank candidate genes. The 
random walk method [91] considers the random walk on 
graphs and uses a diffusion kernel matrix [87] derived from 
a PPI network as the steady-state transition probability 
matrix. The random walk method then defines the similarity 
score as the sum of elements of the diffusion kernel corre-
sponding to known disease genes for each candidate gene. 
CIPHER [92] adopts a regression model for similarities 
between phenotypes and considers the Gaussian kernel for 
closeness between genes. The Pearson correlation coeffi-
cient between the similarity of phenotypes and the closeness 
between genes is used as a similarity score. On the other 
hand, PRINCE [93] and MINProp [94] are based on the 
iterative label propagation algorithm [95]. PRINCE defines 
the prioritization function, which combines functional 
similarities from the network information with prior infor-
mation for disease phenotypes as the similarity score. The 
prioritization function is obtained by iteratively applying a 
label propagation algorithm. MINProp first defines two 
heterogeneous networks, such as a gene network and a 
disease network, and then additionally defines bipartite 
networks between two heterogeneous networks from known 
disease-gene associations. After initializing the labels of the 
disease genes, MINProp iteratively propagates label infor-
mation through three networks until convergence occurs. 
Finally, the converged label scores are used as the similarity 
scores. From the comparison study in [93, 94], PRINCE and 
MINProp outperform the random walk and CIPHER me-
thods, respectively. There is no comparison study between 
PRINCE and MINProp, but MINProp is more general than 
PRINCE, since MINProp can be applied to three or more 
heterogeneous networks. We report these disease gene 
prioritization methods with their data resources in Table 4 
[12, 13, 15-18, 91-94, 96-99].

Genome-wide association study (GWAS)

The GWAS measures DNA sequence variations in the 
human genome to identify associations between genetic 
variants and diseases (or phenotypes). To measure genetic 
variations, the single- nucleotide polymorphism (SNP), 
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Method Data resource Reference

HumanNet NCBI [105], GEO [106], SMD [107], BioGRID [13], IntAct [18], BIND [97], MINT [17], HPRD 
[12], InterPro [108]

Lee et al. [102]

NIMMI Height GWAS data ([109, 110], www.genome.gov/19518664), Crohn’s disease GWAS data [111], 
BioGRID [13]

Akula et al. [103]

dmGWAS Breast cancer study [112], pancreatic cancer study [113], PINA [114] Jia et al. [104]

Table 5. Network-based genome-wide association study methods

which represents a single base-pair change in the DNA 
sequence, is generally used as a marker of a genomic region 
in the GWAS. Generally, the GWAS conducts a comparison 
of the SNPs between case and control groups (i.e., disease 
and non-disease groups) by statistical methods, such as 
ANOVA and logistic regression, to identify significant SNPs 
related to the disease. Genetic risk factors revealed by a 
GWAS can be used as preventive markers or for therapeutic 
targets in curing the disease. There have been more than 
11,000 SNPs discovered as candidate bio-markers in 
common diseases [100]. The large number of SNPs detec-
table in the human genome can, however, lead to multiple 
testing problems. To control the false positive errors (i.e., 
type I errors in the context of statistical testing procedures), 
the Bonferroni correction and false discovery rate [101] 
methods are commonly adopted. Although these multiple 
testing rules have been successful in the identification of 
significant single SNPs, these test procedures often fail to 
detect genomic regions that are weakly associated with the 
disease and still ignore the combined effects caused by the 
interactions between genes. 

The network-based GWAS methods [102-104], summa-
rized in Table 5 [12, 13, 17, 102-114], take into account both 
interactions between genes or proteins with association 
information available from a GWAS. The HumanNet method 
[115] combines functional gene networks derived from 
multiple network sources, such as the PPI network, and 
mRNA co-expression with the log odds ratio from GWAS 
data to prioritize disease genes. By combining functional 
gene networks and the information from GWAS data, 
HumanNet has higher power to detect disease-related 
genes. Unlike HumanNet, NIMMI [116] and dmGWAS 
[117] focus on identifying groups of genes associated with 
diseases, based on GWAS data and PPI network data. NIMMI 
constructs a PPI network with weights of genes by using a 
modified Google PageRank algorithm [118]. The weights of 
genes are then combined with the gene-based association 
p-values calculated from GWAS data. The subnetworks of 
genes are identified by the DAVID method [119, 120] with 
the network structure and weights of genes. On the other 
hand, dmGWAS only considers gene-based association 
p-values as the node weights and proposes a modified ver-

sion of the dense module searching method [121] to prio-
ritize candidate groups of genes.

Discussion

We have reviewed a number of methods related to two 
topics in network data analysis: network reconstruction and 
network-based application. Network reconstruction can be 
thought of as a reverse-engineering problem whose goal is to 
rebuild true structures or relationships from observations. 
In particular, we focused on statistical methods for building 
GRNs, including the Gaussian graphical model, correlation 
network, Bayesian network, and information theory-based 
methods. Most methods that we have reviewed consider the 
sparsity on the graph structure to select a small number of 
significant dependencies between nodes. This sparsity con-
dition is adequate for the network in biological systems, 
since it reflects a scale-free feature, where several nodes have 
many edges but the majority of nodes only has three or four 
edges [5]. Although most methods in Gaussian graphical 
models are well studied in their theoretical properties, these 
methods have limitations when applied to biological data. 
Since these methods basically assume a Gaussian distribu-
tion, they are only applicable for continuous-type datasets, 
such as gene expression levels. To construct networks from 
other types of data, such as binary or counts, the Bayesian 
network and information theory-based methods are more 
attractive than correlation-based methods.

Second, we introduced various methods in three network- 
based applications. Most methods consider similarity mea-
sures between nodes and then use these measures to predict 
biological functions or prioritize candidate genes associated 
with diseases. As technologies in the experiments progress, 
the network-based methods can be improved and widely 
extended. For instance, even though the neighborhood 
counting method [1] in protein function prediction only 
considers the count of annotated functions in the neigh-
borhood from a PPI network, the recently developed 
methods [72, 83] can contain not only neighborhood infor-
mation but also functional similarities from multiple 
networks. In addition, module-assisted methods that focus 
on identifying a functional group of proteins are also 
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available and well summarized in [122]. Furthermore, the 
network-based tumor stratification (NBS) method has been 
developed recently [123]. This NBS method combines 
mutation profiles from The Cancer Genome Atlas (TCGA) 
projects [116, 117, 124, 125] and network information to 
obtain informative strata (e.g., subtypes of cancer). 
Although these network-based methods have been im-
proved, these methods still lack accuracy compared with 
other methods [115]. Since the high-throughput data may 
contain many false positives [126], the network-based 
methods are affected in their accuracy. Although their 
performance depends on the quality of data, their effects are 
expected to decrease in the future as improvements are made 
in measurement accuracy.  
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