Browse > Article
http://dx.doi.org/10.33851/JMIS.2022.9.1.21

A Binary Classifier Using Fully Connected Neural Network for Alzheimer's Disease Classification  

Prajapati, Rukesh (Department of Information and Communication Engineering, Chosun University)
Kwon, Goo-Rak (Department of Information and Communication Engineering, Chosun University)
Publication Information
Journal of Multimedia Information System / v.9, no.1, 2022 , pp. 21-32 More about this Journal
Abstract
Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.
Keywords
Activation Functions; Alzheimer's Disease; Dense Neural Network; FreeSurfer; MRI;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 N. kumar, J. manhas, and V. sharma, "Comparative study to measure the performance of commonly used machine learning algorithms in diagnosis of Alzheimer's disease," Journal of Multimedia Information System, vol. 6, no. 2, pp. 75-80, 2019.   DOI
2 R. Haque and A. Levey, "Alzheimer's disease: A clinical perspective and future nonhuman primate research opportunities", in Proceedings of the National Academy of Sciences. vol. 116, no. 52, pp. 26224-26229, 2019.   DOI
3 M. S. Albert, S. T. DeKosky, D. Dickson, B. Dubois, H. H. Feldman, and N. C. Fox, et al, "The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease", Alzheimer's & Dementia: The Journal of the Alzheimer's Association, vol. 7, no. 3, pp. 270-279, 2011.   DOI
4 R. S. Desikan, F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, and D. Blacker, et al, "An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest", NeuroImage, vol. 31, no. 3, pp. 968-980, Mar. 2006.   DOI
5 Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, and G. R. Kwon, et al., "Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images", PloS One, vol. 14, no. 10, 2019.
6 A. Eldem, H. Eldem, and D. ustun, "A model of deep neural network for iris classification with different activation functions," in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1-4, 2018.
7 J. Shlens, "A tutorial on principal component analysis", ArXiv, abs/1404.1100, 2014.
8 J. Manhas, R. K. Gupta, and P. P. Roy, "A review on automated cancer detection in medical images using machine learning and deep learning based computational techniques: Challenges and opportunities", Archievs of Computational Methods in Engineering, pp.1-41, 2021.
9 S. K. Lin, H. Hsiu, H. S. Chen, and C. J. Yang, "Classification of patients with Alzheimer's disease using the arterial pulse spectrum and a multilayer-perceptron analysis", Scientific Reports, vol. 11, no. 1, 2021.
10 D. Jeong, B. G. Kim, and S. Y. Dong, "Deep Joint Spatiotemporal Network (DJSTN) for efficient facial expression recognition", Sensors, vol. 20, no. 7, 2020.
11 J. H. Kim, B. G. Kim, P. P. Roy, and D. -M. Jeong, "Efficient facial expression recognition algorithm based on hierarchical deep neural network structure," in IEEE Access, vol. 7, pp. 41273-41285, 2019.   DOI
12 S. Mukherjee, P. Kumar, R. Saini, P. P. Roy, D. P. Dogra, and B. G. Kim, "Plant disease identification using deep neural networks," Journal of Multimedia Information System, vol. 4, no. 4, pp. 233-238, 2017.   DOI
13 I. J. Deary and L. J. Whalley, "Recent research on the causes of Alzheimer's disease", BMJ (Clinical research ed.), vol. 297, no. 6652, pp. 807-810, Oct. 1988.   DOI
14 Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, and G. R. Kwon, "Alzheimer's disease diagnosis based on cortical and subcortical features", Journal of Healthcare Engineering, vol. 2019, pp. 2040-2295, Mar. 2019.
15 A. S. Schachter and K. L. Davis, "Alzheimer's disease", Dialogues in Clinical Neuroscience, vol. 2, no. 2, pp. 91-100, 2000.   DOI
16 Z. Longhe, "2020 Alzheimer's disease facts and figures", Alzheimer's & Dementia, vol. 16, no. 3, pp. 391-460, 2020.   DOI
17 M. Silva, C. Loures, L. Alves, L. Cruz de Souza, K. Borges, and M. Carvalho, "Alzheimer's disease: Risk factors and potentially protective measures", Journal of Biomedical Science, vol. 26, no. 1, pp. 33, May 2019.   DOI
18 S. Bauer, R. Wiest, L. P. Nolte, and M. Reyes, "A survey of MRI-based medical image analysis for brain tumor studies", Physics in Medicine and Biology, vol. 58, no. 13, pp. 97-129, 2013.
19 Q. Lyu and G. Wang, "Quantitative MRI: Absolute T1, T2 and proton density parameters from deep learning", arXiv: Medical Physics, 2018.
20 S. N. Yaakub, R. A. Heckemann, and S. S. Keller, "On brain atlas choice and automatic segmentation methods: A comparison of MAPER & FreeSurfer using three atlas databases", Scientific Reports, vol. 10, no. 1, pp. 1-15.   DOI
21 D. Jha, J. I. Kim, and G. R. Kwon, "Diagnosis of Alzheimer's disease using dual-tree complex wavelet transform, PCA, and feed-forward neural network", Journal of Healthcare Engineering, vol. 2017, 2017.
22 Y. Gupta, R. K. Lama, G. R. Kwon, and Alzheimer's Disease Neuroimaging Initiative, "Prediction and classification of Alzheimer's disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers", Frontiers in Computational Neuroscience, vol. 13, no. 72, 2019.
23 S. Alam, G. R. Kwon, J. I. Kim, and C. S. Park, "Twin SVM-based classification of Alzheimer's disease using complex dual-tree wavelet principal coefficients and LDA", Journal of Healthcare Engineering, vol. 2017.
24 S. H. Basha, S. Dubey, V. Pulabaigari, and S. Mukherjee, "Impact of fully connected layers on performance of convolutional neural networks for image classification", Neurocomputing, vol. 378, pp. 112-119, Feb. 2020.   DOI
25 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, and M. Blondel, et al., "Scikit-learn: Machine learning in python", Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825-2830, 2011.
26 J. Zhang, Y. Gao, B. C. Munsell, and D. Shen, "Detecting anatomical landmarks for fast Alzheimer's disease diagnosis", IEEE Transactions on Medical Imaging, vol. 35, no. 12, pp. 2524-2533, 2016.   DOI
27 N. Kumar, Dr. Manhas, and V. Sharma, "Comparative study to measure the performance of commonly used machine learning algorithms in diagnosis of Alzheimer's disease", Journal of Multimedia Information System, vol. 6, no. 2, pp. 75-80, 2019.   DOI
28 Y. Zhang, Z. Dong, P. Phillips, S. Wang, G. Ji, and J. Yang, et al., "Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning", Frontiers in Computational Neuroscience, vol. 9, 2015.
29 F. R. Faisal, U. Khatri, and G. R. Kwon, "Diagnosis of Alzheimer's disease using combined feature selection method," Journal of the Korean Society for Multimedia, vol. 24, no. 5, pp. 667-675, 2021.
30 D. Chyzhyk, M. Grana, A. Savio, and J. Maiora, "Hybrid dendritic computing with kernel-LICA applied to Alzheimer's disease detection in MRI", Neurocomputing, vol. 75, no. 1, pp. 72-77, 2012.   DOI
31 S. J. Park, B. G. Kim, and N. Chilamkurti, "A robust facial expression recognition algorithm based on multi-rate feature fusion scheme", Sensors, vol. 21, no. 21, 2021.
32 D. Prakash, N. Madusanka, S. Bhattacharjee, H.-G. Park, C. H. Kim, and H. K. Choi, "A comparative study of Alzheimer's disease classification using multiple transfer learning models," Journal of Multimedia Information System, vol. 6, no. 4, pp. 209-216, 2019.   DOI