Acknowledgement
Supported by : 한국연구재단
References
- PubMed: MEDLINE Retrieval on the World Wide Web. DOI=http://www.sanger.ac.uk/
- Chiang, J.H., Yu, H.C., and Hsu, H.J. GIS: a biomedical text-mining system for gene information discovery, Bioinformatics. 20, 1, (2004), 120-121. https://doi.org/10.1093/bioinformatics/btg369
- Xie, B., Ding, G., Han, H., Wu, D. miRCancer: a microRNA-cancer association database constructed by text mining on literature, Bioinformatics. 2013. 29(6):638-644. https://doi.org/10.1093/bioinformatics/btt014
- Lee, S., Choi, J., Park, K.., Song, M., and Lee, D. Discovering context-specific relationships from biological literature by using multi-level context terms, BMC Medical Informatics and Decision Making. 12(Suppl 1):S1 (2012). https://doi.org/10.1186/1472-6947-12-S1-S1
- Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R. Associating Genes and Protein Complexes with Disease via Network Propagation. PLoS Comput Biol. 6(1): e1000641. https://doi.org/10.1371/journal.pcbi.1000641
- Li, S., Wu, L., and Zhang, Z. Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach. Bioinformatics. 22, 17 (2006), 2143-2150. https://doi.org/10.1093/bioinformatics/btl363
- HGNC Database, HUGO Gene Nomenclature Committee (HGNC), EMBL Outstation - Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK. DOI=http://www.genenames.org/
- Wellcome Trust Sanger Institute. DOI=http://www.sanger.ac.uk/
- KEGG: Kyoto Encyclopedia of Genes and Genomes. DOI=http://www.genome.jp/kegg/
- National Library of Medicine (US). Genetics Home Reference [Internet]. Bethesda (MD): The Library. DOI=http://ghr.nlm.nih.gov/
- National Cancer Institute: Comprehensive Cancer Information. DOI=http://www.cancer.gov/
- Gottlieb, A., Magger, O., Berman, I., Ruppin, E., Sharan, R. PRINCIPLE: a tool for associating genes with diseases via network propagation, Bioinformatics. 2011. 27(23):3325-3326.
- Hong, L., Han, Y., Zhang, H., Zhao, Q., Yang, J., Ahuja, N. High expression of epidermal growth factor receptor might predict poor survival in patient with colon cancer: a meta-analysis. Genet Test Mol Biomarkers. 2013; 17(4) :348-51. https://doi.org/10.1089/gtmb.2012.0421
- Teng, Z., Wang, L., Cai, S., Yu, P., Wang, J., Gong, J., Liu, Y. The 677C>T (rs1801133) polymorphism in the MTHFR gene contributes to colorectal cancer risk: a meta-analysis based on 71 research studies. PLoS One. 2013; 8(2):e55332. https://doi.org/10.1371/journal.pone.0055332
- Saito, S., Okabe, H., Watanabe, M., Ishimoto, T., Iwatsuki, M., Baba, Y., Tanaka, Y., Kurashige, J., Miyamoto, Y., Baba, H. CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer. Oncol Rep. 2013 Apr; 29(4):1570-8. https://doi.org/10.3892/or.2013.2273
- Hinoi, T., Loda, M., Fearon, ER., Silencing of CDX2 expression in colon cancer via a dominant repression pathway. J Biol Chem. 2003 Nov 7;278(45): 44608-16. https://doi.org/10.1074/jbc.M307435200
- Park, JH., Kim, NS., Park, JY., Chae, YS., Kim, JG., Sohn, SK., Moon, JH., Kang, BW., Tyoo, HM., Bae, SH., Choi, GS., Jun, SH. MGMT -533G>T polymorphism is associated with prognosis for patients with metastatic colorectal cancer treated with oxaliplatin-based chemotherapy. J Cancer Res Clin Oncol. 2010 Aug;136(8):1135-42. https://doi.org/10.1007/s00432-010-0760-8
- Liu, C., Wang, QS., Wang, YJ. The CHEK2 I157T variant and colorectal cancer susceptibility: a systematic review and meta-analysis. Asian Pan J Cancer Prev. 2012;13(5);2051-5. https://doi.org/10.7314/APJCP.2012.13.5.2051
- Bajro, MH., Josifovski, T., Panovski, M., Jankulovski, N., Nestorovska, AK., Metevska, N., Petrusevska, N., Dimovski, AJ. Promoter length polymorphism in UGT1A1 and the risk of sporadic colorectal cancer. Cancer genetics, 2012 Apr;205(4):163-7. https://doi.org/10.1016/j.cancergen.2012.01.015
- Wang, W., Zhao, C., Jou, D., Lu, J., Zhang, C., Lin, L., Lin, J. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancner Res. 2013 Oct;33(10):4279-84.
- Tang, Y., Zhu, L., Li, Y., Ji, J., Li, J., Yuan, F., Wang, D., Chen, W., Huang, O., Chen, X., Wu, J., Shen, K., Loo, WT., Chow, LW. Overexpression of epithelial growth factor receptor (EGFR) predicts better response to neo-adjuvant chemotherapy in patients with triple-negative breast cancer. J Transl Med. 2012 Sep 19;10 Suppl 1:S4. https://doi.org/10.1186/1479-5876-10-S1-S4
- Tulsyan, S., Agarwal, G., Lal, P., Agrawal, S., Mittal, RD., Mittal, B. CD44 gene polymorphisms in breast cancer risk and prognosis: a study in North Indian population. PLoS One. 2013 Aug 5;8(8):e71073
- Jung, JA., Lim, HS. Association between CYP2D6 genotypes and the clinical outcomes of adjuvant tamoxifen for breast cancer: a meta-analysis. Pharmacogenomics. 2014 Jan;15(1):49-60. https://doi.org/10.2217/pgs.13.221
- Buck, K., Hug, S., Seibold, P., Ferschke, I., Altevogt, P., Sohn, C., Schneeweiss, A., Burwinkel, B., Jager, D., Flesch-Janys, D., Chang-Claude, J., Marme, F. CD24 polymorphisms in breast cancer: impact on prognosis and risk. Breast Cancer Res Treat. 2013 Feb;137(3):927-37. https://doi.org/10.1007/s10549-012-2325-9
- Piotrowski, P., Lianeri, M., Rubis, B., Knula, H., Rybczynska, M., Grodecka-Gazdecka, S., Jagodzinski, PP. Murine double minute clone 2,309T/G and 285G/C promoter single nucleotide polymorphism as a risk factor for breast cancer: a Polish experience. Int J Biol Markers. 2012 Jul 19;27(2):e105-10. https://doi.org/10.5301/JBM.2012.9140
- Araujo, AP., Ribeiro, R., Pinto, D., Pereira, D., Sousa, B., Mauricio, J., Lopes, C., Medeiros, R. Epidermal growth factor genetic variation, breast cancer risk, and waiting time to onset of disease. DNA Cell Biol. 2009 May;28(5):265-9. https://doi.org/10.1089/dna.2008.0823