• Title/Summary/Keyword: Discrete Approximation

Search Result 247, Processing Time 0.022 seconds

DISTURBANCE ATTENUATION FOR A CLASS OF DISCRETE-TIME SWITCHED SYSTEMS WITH EXPONENTIAL UNCERTAINTY

  • Li, Changlin;Long, Fei;Ren, Guohui
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.775-795
    • /
    • 2011
  • The disturbance attenuation problem for a class of discretetime switched linear systems with exponential uncertainties via switched state feedback and switched dynamic output feedback is investigated, respectively. By using Taylor series approximation and convex polytope technique, exponentially uncertain discrete-time switched linear system is transformed into an equivalent switched polytopic model with additive norm bounded uncertainty. For such equivalent switched model, one designs its switching strategy and associated state feedback controllers and dynamic output feedback controllers so that whole switched model is asymptotical stabilization with H-in nity disturbance attenuation base on switched Lyapunov function and LMI approach. Finally, two numerical examples are presented to illustrate our results.

The problem of stability and uniform sampling in the application of neural network to discrete-time dynamic systems

  • Eom, Tae-Dok;Kim, Sung-Woo;Park, kang-bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.119-122
    • /
    • 1995
  • Neural network has found wide applications in the system identification, modeling, and realization based on its function approximation capability. THe system governe dby nonlinear dynamics is hard to be identified by the neural network because there exist following difficulties. FIrst, the training samples obtained by the stae trajectory are apt to be nonuniform over the region of interest. Second, the system may becomje unstable while attempting to obtain the samples. This paper deals with these problems in discrete-time system and suggest effective solutions which provide stability and uniform sampliing by the virtue of robust control theory and heuristic algorithms.

  • PDF

The Analysis of Partial Discharges Pattern using Discrete Wavelet Transform (이산 웨이브렛변환에 의한 부분방전패턴 분석)

  • 이현동;김충년;지승욱;박광서;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.183-187
    • /
    • 2000
  • This paper deals with multiresolution analysis of wavelet transform for partial discharge(PD), both corona and surface discharge. Multiresolution analysis was used for performing discrete wavelet transform. PD signals was decomposed into "approximation" and "detail" components until 4 levels by using discrete wavelet analysis. In this paper, daubechies family is adopted for the research of the characteristics of PD signals. The results show that in corona discharge the segment 7, 8, 9, 10, 11 values of defined variable is increased with discharge process, so phase distribution is characterized by 210~330 ranges. In case surface discharge in expoxy insulator inserted, defined variable values is fairly symmetric discharge pattern because coupled both corona and dielectric bounded discharges. We can confirmly discriminate the type PD source. the type PD source.

  • PDF

Discrete-Time Controller Design using Identification of Feedback System in Frequency Domain (주파수역 피드백 시스템 인식을 이용한 이산시간 제어기 설계)

  • Jung, Yu-Chul;Shim, Young-Bok;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.99-104
    • /
    • 2001
  • Discrete-time controller design is proposed using feedback system identification in frequency domain. System Stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Popov criterion. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation components, DC disturbance and a pure integration.

  • PDF

System Realization by Using Inverse Discrete Fourier Transformation for Structural Dynamic Models

  • Kim, Hyeung Y.;W. B. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.289-294
    • /
    • 1998
  • The distributed-parameter structures expressed with the partial differential equations are considered as the infinite-dimensional dynamic system. For implementation of a controller in multivariate systems, it is necessary to derive the state-space reduced order model. By the eigensystem realization algorithm, we can yield tile subspace system with the Markov parameters derived from the measured frequency response function by the inverse discrete Fourier transformation. We also review the necessary conditions for the convergence of the approximation system and the error bounds in terms of the singular values of Markov-parameter matrices. To determine the natural frequencies and modal damping ratios, the modal coordinate transformation is applied to the realization system. The vibration test for a smart structure is performed to provide the records of frequency response functions used in the subspace system realization.

  • PDF

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

Piecewise-Constant Method for Angular Approximation for the Second-Order Multidimensional Neutron Transport Equations (다차원 2계 중성자 수송방정식의 방향근사를 위한 영역상수법)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.46-52
    • /
    • 2007
  • The piecewise constant angular approximation is developed to replace the conventional angular quadrature sets in the solution of the second-order, multi-dimensional $S_{N}$ neutron transport equations. The newly generated quadrature sets by this method substantially mitigate ray effects and can be used in the same manner as the conventional quadrature sets are used. The discrete-ordinates and the piecewise-constant approximations are applied to both the first-order Boltzmann and the second-order form of neutron transport equations in treating angular variables. The result is that the mitigation of ray effects is only achieved by the piecewise-constant method, in which new angular quadratures are generated by integrating angle variables over the specified region. In other sense, the newly generated angular quadratures turn out to decrease the contribution of mixed-derivative terms in the even-parity equation that is one of the second-order neutron transport equation. This result can be interpreted as the entire elimination or substantial mitigation of ray effect are possible in the simplified even-parity equation which has no mixed-derivative terms.

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization (다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현)

  • 유정규;김지철;김승조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF