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Abstract Neural network has found wide applications in the system identification, modeling, and realiza-
tion based on its function approximation capability. The system governed by nonlinear dynamics is hard
to be identified by the neural network because there exist following difficulties. First, the training samples
obtained by the state trajectory are apt to be nonuniform over the region of interest. Second, the system
may become unstable while attempting to obtain the samples. This paper deals with these problems in
discrete-time system, and suggest effective solutions which provide stability and uniform sampling by the
virtue of robust control theory and heuristic algorithms.
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1. Introduction

Since the artificial neural network was modeled form
the biological neurons, it has been widely used due
to its properties of approximation, generalization, etc.
There have been various researches [1][3] to analyze
the function approximation capability of neural net-
work. But it is still remained unsolved to compute the
network structure as a function of the complexity of
the problem.

Besides the classical problem of neural network men-
tioned above, additional problems arise in the applica-
tions for dynamic systems. In the early days of neural
network, the applications were primarily in the area of
pattern recognition and hence pertains to static sys-
tems. Since dynamics constitutes an essential part of
all practical systems, it was tried by many authors (4]
to use neural networks as components in dynamical
systems. The various designs of control architectures
are studied and extensive simulations are carried out
to show the models proposed are particularly effective
for the identification and control of nonlinear systems.
However, much of the work is of a heuristic nature.
Narendra et al. [5] presented the first attempt to re-
late the experimental studies to theoretical develop-
ments and tried to propose a general methodology by
which control methods based on neural networks can
be made more rigorous.

In most of the papers which seek for the general
methodology in using neural networks for dynamic sys-
tems, the efforts are mainly contributed to the stability
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analysis. These analyses are based on the assumptions
endowed to systems, in the other words, if neural net-
work is applied to a design methodology, the function
in the system should be examined whether it satis-
fies the prescribed assumptions or not. But, it does
not seem always possible to judge the satisfaction of
such assumptions proposed by Narendra. Hence, it is
needed to relax the stringent assumptions to the sim-
plified ones such as the boundedness of the function,
etc.

Narendra [6] also suggested the successive identifi-
cation and control strategy to guarantee the stability
and the uniform sampling in the process of identifying
a nonlinear function in the dynamic equation. How-
ever, they induced the strong results only for the first
order system and employed ambiguous assumptions to
be trapped into mass of problems. To solve these prob-
lems in the continuous-time system, we adopted the su-
pervisory control algorithm of Wang [7] and used this
algorithm to guarantee the stability during the training
time of neural network [10]. We also modified the su-
pervisory algorithm and applied it to robot dynamics
to provide the uniform sampling as well as the stability
[12]. In this paper, we present a reasonable solution for
the problem of uniform sampling and stability which
occurs in certain class of discrete-time systems.



2. Establishment of the base region

The class of system in which we are interested is
described by

x(k+ 1) = f(x(k})) +u (1)

where x,u € R" and [ is an unknown mapping. The
merit of the equation (1) is that f can be directly can-
celed if we know the information of f in some area.
The theorem introduced by Corless and Manela (8]
provide a sufficient condition for g.u.a.s., so enable
bounded random input to be used for identification. It-
erative perturbation algorithm suggested by Eom [11]
can be applied to identify the base region in this case.
However, without the knowledge of satisfying the con-
dition a heuristic approach named linearized model ap-
proach with pseudo-inverse is preferred. The target
system must show the stable fashion before our control
action, 1.e., the system stays in the basin of a stable
equilibrium point, a limit cycle, or a chaotic attractor.
Especially in this paper, the following is assumed.

Assumption 1 The system described by (1) initially
stays in one of its stable equilibrium points with zero
control input.

For the first order system, the following useful theo-

rem is proved to judge the satisfaction of Assumption
1.

Theorem 1 (First Order Case) If the function f in (1)
has as many stable equilibrium points as critical points
on the interval I, and satisfies the Schwartzian deriva-
tive

(=) 3.1
Fle) 27

then there are no limit cycles.

(z) )2 <0 (2)

Sf(x) = l(z)

Proof The proof is given in [9].
O

For higher order systems, there exists no such cri-
terion like Schwartzian derivative. So even the known
systems are hard to be confirmed to satisfy Assump-
tion 1.

If a system described by (1) satisfies Assumption 1,
it can be linearized at the stable equilibrium point:

%(k + 1) = A%X(k) + Bu (3)

where A has eigenvalues inside the unit circle, and B
is the matrix whose elements are all 1.

Assumption 1 is needed to start identification process
at the basin of the stable equilibrium point. Further-
more to get the information of any state around that
point by the perturbation of u, equation (3) should be
locally controllable. For local controllability, the fol-
lowing is assumed.
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Assumption 2 Linearized system (3) is controllable.

And the following theorem assures the local control-
lability of the original nonlinear equation (1).

Theorem 2 If equation (3) satisfies Assumption 2, the
original nonlinear equation (1) is locally controllable.

Proof The proof is given by Narendra.
]

By theorems and assumptions it is clear that there
exists stable and controllable region around a stable
equilibrium point. But, finding the range where sta-
bility and controllability hold is very difficult. So we
propose a heuristic algorithm to approximate the ma-
trix A with the samples around the equilibrium point.

First, gather the finite number of (%;(k), %:(k + 1))
pairs by adjusting incremental input after the state
converges sufficiently close to the stable equilibrium
point. Then, an estimation of A, is calculated based
on the late N sequence of (%;(k),%;(k + 1)) pairs:

X(k) = [®n(k), - ®a(R)] (4)
X(/C-i— 1) = [iN(k+1)""ai1(k+1)] (5)
X(k+1) = Aere X (k) (6)

A = X(b+1)X(R)* ™

Ii

X(k+1)X(R)T(X(RX(ET) (8)

Now, A, 1s used to check the degree of stability.
The exploration continues toward all possible direc-
tions around the equilibrium point as long as

3{Acrt) < Omaz < 1 (9)

where &(A..¢) is the maximum eigenvalue of A, and
Omaz 1S determined by the designer’s choice. If the
condition (9) is successively conformed, the whole ex-
plored region satisfies ||x(k+1)|| < ||%(k)]|, in the other
words, the state converges to zero.

Simulation :(1st order case) We will show the valid-
ity of linearized model approach with pseudo-inverse
for the 1st order system described by

z(k + 1) = cos[z(k)]| v/ 4z(k) (10)

The system initially stays at £ = —0.92, one of its
stable equilibrium points. We choose N = 1 and
Omaz = 0.9. N = 1 means we use the usual inverse
instead of the pseudo-inverse. Fig.1 shows the explo-
ration around the stable equilibrium point. The iden-
tification is performed first to the positive direction
and next to the negative direction. If state trajectory



comes back to the stable equilibrium point, the same
procedure is repeated with a larger magnitude of in-
put. Doing this, A, is calculated to judge the relative
stability. Fig.2 shows the growth of A,,; as the system
becomes unstable. Identification is terminated when it
exceeds o,,qz. The sign of eigenvalues are matched to
the direction of identification.

3. Successive Identification and Control
Algorithm

Robust control theory and several heuristic algo-
rithms is verified helpful for the establishment of the
base region of successive identification and control al-
gorithm. However, they do not guarantee the uniform
sampling so additional processing is needed to get uni-
formly distributed samples form randomly distributed
data. The wide range of the base region sacrifices
more time. In successive identification and control al-
gorithm, the region available for the next step of iden-
tification depends on the range of the pre-identified re-
gion. Too narrow base region may be harmful for suc-
cessive identification and control algorithm. It should
be properly determined in comparison with the desired
region in the whole state space.

Successive identification and control algorithm can
be applied to any kind of function f in (1) provided
that the knowledge of f is sufficiently accurate over
some region. The establishment of such an region in a
stable fashion is explained in the previous sections.

The each step of successive identification and control
algorithm is backed up by the following theorems and
assumptions.

Assumption § There exist a function N; which ap-
proximates f such that for Vx which satisfies ||x —
x*|| < D,

fx) = Ny (x)|| < 6. (11)

The simple feedforward neural network(FNN) is
used as Ny because it has the following property.

Theorem 8 FNN described by

N
Z ciko(y; -x+6;5)
=1

(12)

where N,c;i,0; € R" and y;,x € R", is an universal
approximator in C[D] space.

Proof It is proved by many authors, see for example
(2]
a

It is demanded to make the local stable equilibrium
point at the center of the known region in our suc-
cessive identification and control algorithm. Therefore
the following theorem is developed.
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Theorem 4 If a system described by (1) satisfies As-
sumption 3, it is possible to make local stable equilib-
rium point at any state x in {x|||x — x*|| < D}.

Proof Adjusting control input u = —N; + Ax + x*
where the eigenvalues of A are inside the unit circle,

x* becomes the local stable equilibrium point.

a

To guarantee the extension of the identified region
in the next iteration, the following theorem is needed.

Theorem 5 There exists a scalar I, > 0 such that for
Vx which satisfies ||x — x*|| < L

[1£(x) = Ny (x)|| < D. (13)
Proof It is induced from the basic property of the
continuous function. Because | f(x) — Ny(x)]| < § in
the region, ||x — x*|| < D, it is straightforward that
there exists some region which satisfies § < ||f(x) —
N¢(x)|| < D outside of it.

O

Note that ||f(x) — Ny(x)]] < D is equivalent to
Ilx(k + 1) —x*(k + 1)]| < D when input, u is zero.

The procedure of our successive identification and
control algorithm is as follows.

o STEP 1 Make a local stable equilibrium point,
x*, at the center of the known region, ||x — x*|| <
D, by adjusting u = —Ny +x* +v.

(guaranteed by Theorem 4)

STEP 2 Adjust an input v = D + k - § where §
is the vector which has the random direction and
the fixed magnitude, and the initial value of k is
1. Next adjust a zero input v = 0. If x(k + 1) is
inside the region, ||x —x*|| < D, add f(x(k)) to a
training set of neural network, increase k by one,
and return to STEP 1. If not, proceed to STEP 3
with D =D+ k- ||§]].

(guaranteed by Theorem 3)

STEP 38 Using the training set obtained in STEP
2, train a neural network until it approximates f
in the region, Dyq < ||x —x*|| < Dyew, above the
accuracy of || f(x) — Ny(x))| < 6 and then go back
STEP 1.

(guaranteed by Theorem 5)

As we can see clearly in STEP 2, the information
of f(x) at x = x* + k - § can be directly obtained, so
unfirmly distributed sample, equally space by §, are
available for training. Cause x comes back to the lo-
cal stable equilibrium point at least in 2-step when the
zero input is adjusted, The identification speed is very
fast.

Simulation :(1st order case) For the simulation of suc-
cessive identification and control algorithm we choose
the same dynamic equation as used for the linearized
model approach with pseudo-inverse in the previous



section.
z(k + 1) = cos[z(k)] ¥/ 4z(k) (14)

It is assumed that the region [—0.98 — 0.86] is success-
fully identified by a neural network A.rt as a measure
of relative stability. Then, successive identification and
control algorithm enables us to identify the region of
interest, [—0.98,5], with three neural networks. Fig.3
shows the result of the identification.

4. Conclusion and Further Study

This paper is devoted to guarantee the stability in
the application of neural network to dynamics sys-
tem identification. For the certain class of discrete-
time systems, successive identification and control al-
gorithm is developed for uniform sampling and sta-
bility after base region is identified. The base region
is trained by neural network with iterative perturba-
tion algorithm when the system equation satisfies a cer-
tain condition borrowed from the robust control the-
ory. Otherwise the base region is carefully explored
using estimated jacobian, A, as a criterion for rela-
tive stability.
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Fig.1 Exploration around the stable equilibrium point
while calculating Acre¢.
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Fig.2 The growth of eigenvalues of A.., as system be-
comes unstable.(The si gn is chosen to display the di-
rection of identification, - -: dmqs)
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Fig.3 Approximation of equation {14) by three neural
netw orks using SCA.



