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Abstract The distributed-parameter structures
expressed with the partial differential equations are
considered as the infinite-dimensional dynamic system.
For implementation of a controller in multivariate
systems, it is necessary to derive the state-space
reduced order model. By the eigensystem realization
algorithm, we can yield the subspace system with
the Markov parameters derived from the measured
frequency response function by the inverse discrete
Fourier transformation. We also review the necessary
conditions for the convergence of the approximation
system and the error bounds in terms of the singular
values of Markov-parameter matrices. To determine
the natural frequencies and modal damping ratios,
the modal coordinate transformation is applied to the
realization system. The vibration test for a smart
structure is performed to provide the records of fre-
quency response functions used in the subspace system
realization.
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tion, Markov parameter, eigensystem realization,
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1 Introduction

It has been the central problems of vibration special-
ists to determine the accurate control system models
from the measured frequency response data. Undoubt-
edly, the engineering techniques for an experimental de-
termination of the structural vibration modes have been
developed for design improvements of passive vibration
suppression systems. The accurate in-situ determina-
tion of the structural dynamic models far beyond the
traditional modal testing and model determination ac-
curacy levels are demanded in the active vibration con-
trol and the structural health monitoring. The control
system model have to be build prior to the controller
synthesis of the vibration suppression system, like as
a smart structure attenuating the structural vibration
levels actively. The distributed-parameter vibration sys-
tems expressed as the partial differential equations can
be allowed the infinite-dimensional dynamic order to be
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truncated for the control system realization.

However, the structural system identification have no-
table progress in structural dynamics and is facilitated
by the key theoretical framework of state-space mod-
eling from FRF measurement data. The state-space-
based structural system identification can provide the
minimum set of model parameters that participate in
the impulse responses induced from one of the finite di-
mensional model set. The impulse response or Markov
parameters can be obtained from the FRFs obtained
from the input and output spectral density functions
with inverse discrete Fourier transformation(IDFT), or
from the input and output time histroies with discrete
wavelet transformation. The IDFT technique may be
considered to still have overall advantages in the respect
of modal testing practices, while it can have some of de-
merits in the system realization like as the Gibbs phe-
nomenon, leakage, end effects and aliasing, and window-
ing of frequency response functions. Modern structural
identification have been developed recently, whereas the
eigensystem realization algorithm(ERA) [7] and the Q-
Markov COVER [8] are widely used in the system real-
ization algorithm. These realization methods can pro-
vide the balanced minimal order model of the discrete-
time state space system.

Little attention has been given to the point how ac-
curate the state space system of the reduced finite order
model can be approximated to the infinite-dimensional
transfer function obtained by the structural vibration
testing. The present paper investigate the approxima-
tion error bounds and conditions for the transfer func-
tion. It also presents the ERA realization method with
IDFT to find the natural frequencies and modal damp-
ing ratios of structural vibrations.

2 He Approximation by Using IDFT

We begin the approximation of the continuous trans-
fer function by reviewing the mathematical preliminar-
ies. The Hardy space, Hy(i{), p > 1, and He consists
of all analytic functions f on Y with the following prop-



erty, respectively, that
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We also know that if f € H,(U), then a function f(jw)
on OU exists almost everywhere and belongs to Lebesgue
space L,. The space H, (i) is a Banach space and the
Ho(U) is a Hilbert space with the inner product. For
the matrix-valued functions analytic on U/, the quadratic
|lG||2 and uniform norms [|G|le of the G;;(s) € Hp(U)
are defined by

1Gl2 = (‘2715 / Jf” tr{GT(-s)G(s)}ds>2 (2.3)

—joo

IGllco == esssup{F(G(jw))} (24)
w€[0,00}

We can define the Hardy space H,(D) on the unit disk
by the bilinear transformation, z = '3—3 We use La-
guerre model for representation of the transfer function
since it have some efficiency for the bilinear transfor-
mation, while the other models have been developed in
system identification [1]. The classical Laugrre functions
obtained by inverse Laplace transformation of the La-
guerre model have orthogonality in £2(0, co) and com-
pleteness in £; and £; [13]. Assume the transfer func-
tion G(s) is strictly proper and continuous in Re s. We
can choose a sequence {gy} for some 3 such that

=" g (s), (2.5)
k=0
k
where @x(s) = ﬂ\/-?s (g;z) , Bk € R™XP (2.6)

G(s) admits the Fourier series expansion with the com-
plete orthogonal basis for H, (), and g is given by

g =< G, ¢ >——/ G(s)px(~s)ds  (2.7)

Since ¢ (s) consists of a first-order low-pass term and a
kth-order all-pass factor, we can define a transfer func-
tion G(s) by aparting the first-order term in the basis
functions ¢ (s). Then, we get

/I3

R(s) = —G(s) Zrm (2.8)

[e] k
Gy(s) = l;)rkzk, where 2z*F = (%) (2.9)

The bilinear transformation s = ﬂl 7. isa conformal
mapping of the unit disk to the right-half plane Let.
Gy(z) = G(ﬂ1+z) then we find Gy(z) € Ha(D)m*P

since G and R belongs to Ha(U)™*P. The sequence
{rt} in Gy is the inverse Fourier series coefficients of
R(s).

We know that if an orthogonal system is complete,
the Fourier series of every f € Ha(Ud) converges to f in
the H; norm. Also it can be established that the par-
tial sum, referred to as Cesaro partial sum, converges to
G(s) in Hoo norm if only if G(s) € Ha(U)™*? is contin-
uous on the imaginary axis including point at oo [11].
The fact that partial sum Gy := Zf:o riz® converges
to G(s) in He norm as N approaches oo can be ob-
tained from the result that d—q:sﬂ € Hi(U)™>? implies
{lIir&l]} € &1, which can be proved by using the Hardy
inequality [9)].

The approximation theory of Hankel operators have
been used to develop the H ., approximation of infinite-
dimensional system model [10}. The Hankel operator is
compact if G is continuous on the boundary of U/. Let
o(ry) be the kth singular value of the Hankel operator
G. The system transfer function G is said to be nu-
clear whenever Y ;° o(rg) < co. The nuclearity of G is
the necessary condition for convergence in the Hankel
norm o(rg). It can implies the d—%ﬂ € Hi{U)™*? and

”é%ﬂ” < C Y7 ok (ry) for some constant C, shown by
the Rosenblum [15]. Therefore, Gy converges to G as

N approaches oo under condition u(";'sﬂ € Hi(U)™>P.

Recalling G4(z) from (2.9), we can get the M-point
inverse DFT of G4(z) given as

M . .
ry(n) = % Z Gd(ez_’;l&)e_z—"ﬂlf*k, (2.10)
N
GN(s) =) rm(k)z*, N<M (2.11)
k=0

where M =2L, LeN,

The key idea is that the sequence {rs(k)} can be used
as an approximation of {r(k)}. We can establish the
following theorem which is similar to Gu et al [12] to find
Markov parameters for simple transfer functions with a
delay term. Our motivation is originated from how the
modal parameters of the structural dynamic system can
be determined from the realized system model using the
frequency response functions.

Theorem 2.1. Let G be in Ho(U)™>P. If %—(} belongs
to Ha(U)™*P, then

IG(s) = G (s)lleo = O
as (N,M) — (00,00) with N<M. (2.12)
Proof. We begin the proof by the triangle inequality,
IG(s) — GN (8)lleo < IG(s) = Gn(8)lloo
+[IGn(s) = GY (s)llo  (2.13)

We know that the first term on the right goes to zero
by the nuclearity of G(s), given by d—Gdéﬁ € Hi(U)ym>P,



To show the convergence of the second on the right, we
consider that if G(s) is stable and % € Hy(U)™*P,
then

hm Z llear(n

We get rps(n) from (2.10) as follows

—r(n)|j=0, with{z|l=1 (2.14)

1 M (& 2mjlk _ 2mjkn
ry(n) = i Z Zr(l)e M je T M (2.15)
k=0 \i=0
o 1 M-1 i (l—n)k
=>"r(l) (H > P ) (2.16)
=0 k=0

we consider the two cases for the indices ! on the sum-
mation. For [ = PM + n where P is a positive integer,

1 Mol 2mi(i—n)k
e "= (2.17)
k=0
When ! # PM +n, (2.18)
M-1 )

1 275(l=n)k 1 1 — 2mi(l—n) ‘

—M Z e M Ml____"?g;_ﬂl =0 (2.19)
k=0

Substituting (2.17) and (2.18) into (2.16), we get

ru(n) = Y porpm(n). From this, we also obtain the
following inequality

S llear(m) = s@ll < 3 lirpae(n)
n=0 P=1

we can find the upper bound for |Gy — G¥ || with
[Iz¥[loo = 1 as follows.

(2.20)

IGN -~ GN ”oo—'Z”(rM(n = r(n))2" ||

=0
Il < Z liras(n)
n=0

N
< Y lea(n) — x(w)
n=0
The error estimate in (2.19) is bounded from the fact
that 2S12) belongs to H;(U)™*? implies the {||r(n)||} is
l; sequence. Thus, the last term in (2.21) goes to zero
as M approaches to co.  [J
We can notice that the IDFT based approximation
has the same convergence properties as the Fourier series
based approximation. We can reduce the error in the
H oo norm more when we use the real Fourier coefficients.
We can find the error bound in the H., norm as shown
by the following theorem.

Theorem 2.2. {12] If G is stable and % € Hi(U)y™m>?.
Let r(n) and ras(n) be defined as in (2.9) and (2.10) for

—-r(n)|| (2:21)

n=0,1,2,--- ,M - 1. Then,
M-1 oo
IG(s) -GN < D a(rm(n) +2 Y a(r(n)

n=N-+1 n=M

(2.22)
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In general, we use the IDFT with larger point M of
the frequency samples of the frequency response func-
tion while we take smaller number N of Markov param-
eters related to the realized system order. Then the
approximation error in {2.22) will be dominated by the
first term in (2.22). The error bound can estimated as

M

IG(s) - GH@lx Y aEun)).

n=N+1

(2.23)

3 Identification of Vibration Models

In this section we will show how the Markov parame-
ters obtained from IDFT can be exploited for the system
identification based on the state-space model of system.
From the continuous state space system of [A B C] with
a sampling time At, we can obtain the discrete system
model for a sampled data system with zero-order holder,
which can be expressed as

x(k + 1) = Ax(k) + Bu(k) (3.1)
y(k) = Cx(k)
where
N
A=cAdt B :/ ABET B4,
0
x(k) = x(kAt), u(k) =u(kAt), y(k)=y(kAt)

We can also obtain the transfer function approximation
in terms of the Markov parameters derived from IDFT,
which is expressed as

N

G(z) =D +C(z7'I-A) "B~ Y ru(k)* (32)
k=0

ry(k) ~ CA¥ 1B, rp(0)=D (3.3)

We can employ the eigensystem realization algorithm [7]
for the system identification. We begin the ERA proce-
dure by constructing the a blocked Hankel matrix Hgq
from the IDFT results as follows:

r(k+1) r(k+2) r(k+d)
H (k) = r(k + 2)  r(k + 3) r(k +:d +1)
r(k+q) t(k+g+1) rh+q+d—1)

(3.4)

Then, we use a singular value decomposition of Hgy4(0)
and truncate the singular values following the N largest
one as like:

Hyq(0) ~ vaz wl = VNQyWE  (35)

where

VN:Vq"N, QN=QNXN, WN:deN (3.6)



We can also get a discrete system realization of (3.1)
with the order N:

-1 -1
A =Qy ViH()WNQy®

1 I
— 2 pPXp
B=QyWy [O(d—p)xr]

(3.7)

1
C = [Inxm Omx(e-m)] VNQR

From the eigenproblem of A, we have the continuous
modal model from (3.7) by a change of basis, x =
U(z; zo]7 with ¥ = [ 4:

z(k + 1) = Az(k) + Bu(k) (3.8)

y(k) = Cmz(k)
where, A=V¥"'A¥ (3.9)
with % = diag{o; + jw;, i =1,... ,N}

B,= VY 'B=|..[bb...)T
Cm = CV¥ = I_...[Ci 5,’]...]
The state-space structural dynamic model will be de-

rived from the realization model. We begin by consid-
ering the linear vibration system as:

x = Ax(t) + Bu(t), xT(t)=(q q) (3.10)
y(t) = Cx(t)
where
B [M_‘{Bq] c=1[C, 0]

where M, and D and K are the mass, damping and
stiffness matrices, respectively; q is the %-displacement
state vector; u is the p-input displacement vector; y
is the m-sensor displacement output vector; B, and C,
are the input- and output-state influence matrix, respec- .
tively. We can obtain the modal model for the linear
vibration system with a proportional damping
&(t)

(ggg) - [‘“21211' —ZCiiwni] ( @) >+[¢,TOBJ u(t)

N
_ , £(t)
y(t)_?:lﬁ[cqqz, 0]( £ ) (3.12)

by use of the modal basis coordination transfcrmation
defined by q = ®£(t):

3TM® = Inxn, @TK® = diag{w?;,i=1,... % }
N
3TD® = diag{ 2¢niwni, i =1,... = } (3.13)

We can find the relationship between the natural fre-
quencies and damping ratios of the vibration system
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and the complex paired eigenvalues of the realized state-
space system, viz.,

2

Whi = wiz + 01'27 "Ciwn.i = 0; (314)

and we can notice that there exist the unique similarity
transformation z; = E;F;& such that

AiEi = EiQi, F;Q, = Q;F; (3.15)
where
X 0 + Jw; 0 o 0 1
A= 0 0; — jwi] » = ['wfn- —2Cniwni

The transformation E; and F; are two rotation opera-
tors of the modal coordination vectors, the first for ro-
tating the diagonal state transition matrix to the canoni-
cal second-order form and the second for preserving the
transformation while zeroing out the the first term of
B,.. We want to provide the result of [18] for the simi-
larity transformation, which is obtained by the solution
of the simultaneous linear equations.

-1
rWw; — 04

(3.16)

E;

y i —

_:Z[J'wi—

_ g 1 —d. TiW; + 0
2w |jwi+oi -1 :

2 2
w; + o}

where r; is given by r; = Sb,;/Rb; and d; is the scaling
factor for normalizing the mode shape. Finally, we can
obtain the input and output participation vector from
(3.12) as shown in (3.17) .

2RbT
d;

¢TB, = C,¢; = dir?Sc;w; (3.17)
We can recorver the the physical information of the
real controlled system from the realization model de-
rived from the frequency response function measure-
ments, while it can be lost in the state space system

realization model.

4 Modeling Results and Discussion

The flexural structure designed for implementing
this realization model, as a smart structure, is com-
prised with the carbon-fibre-reinforced-plastic rectan-
gular composite plates with aspect ratio of about 1.5,
which is stacked by the lamina with fiber orientation
[ 0\45\—45\90 ];,, and a piezoelectric actuator patched
with finite dimensions. We use the composite material in
a structural dynamic system since it has higher strength
and modulus on its specified weight than metal materi-
als. We perform the experimental modal testing to get
the frequency response functions of the composite plate
by energizing the ceramic actuator. We measure the vi-
brational displacement of the free end of the cantilevered
plate as the output voltage of a gap sensor, which is then
feed through the signal analyzer to compute the sampled
frequency response data. We fulfill the simulation of the



realization model and find the natural frequency and the
modal damping ratios of the structural vibration of the
composite plate. We also investigate the estimation er-
ror bound according to the variation of the number of
frequency response sampled data points applied in the
IDFT. The Fig. 1 represents the frequency response
function of the cantilevered composite plate. We can

500 ne R4

—— ampltude of FRF
——ealization by H(k)
- - - phase of FRF

R

300

-120

0.0

amplitude(aB)
=
8
phase(deg)

-100

<300

frequency(1/s}

Figure 1: The frequency response function of the com-
posite plate vibration and the sixth-order realization
model for the r'%?* Markov parameters.

obtain the Markov-parameter sequence by using IDFT
of the frequency response function, which is filtered out
the FFT weighted window and the first order filter. The
Fig. 2 shows the history of the Markov-parameter se-
quence of {r!%?¢}. An discrete state-space model of the

Markov's parameter values H(k)

0 100 200 300 400 500
data points k

Figure 2: The Markov-parameter sequence {r!0?4}

realization results is given as an example, which is de-

rived from the Markov parameter sequence of {r3'?}.

293

Table 1: Natural Frequencies of the Realization Models

Markov Sampled Data l wn1(Hz) I wn2(Hz) Twng(Hz)]

r2048 17.4 36.4 121.0
rio24 13.9 34.8 72.9
r5l2 69.2 110.2

Table 2: Damping Ratios of the Realization Models

rMmkov Sampled Data Rﬂl (%)ﬁnZ (%LI Cn3 (%LI

12048 17.4 364 | 1210
rj024 13.9 34.8 72.9
r312 69.2 | 1102

The system of [A4 By C4 Dy] represent the fourth-
order-system approximation of the flexible vibration sys-
tem of the composite plate. The corresponding system
model (3.8) with the diagonaliszed transition matrix for
A4 is given by [.7\4 Am4 Bm4 Cm4].

-0.13 -0.98 0.012 0.01
Ay = 099 -0.14 -0.03 0.04

0.02 -0.03 —-0.90 -041

0.04 -0.04 043 -0.89

B, = [0.17,-0.06,-0.12,—0.15 |7
C, = [4.20,-0.22,1.90,-0.74], Dy =—-0.29
Ay =[ —0.90 — 0.425, —0.90 + 0427,
—0.14 — 0.985, —0.14 + 0.98; ],
Bms =[ —0.11 - 0.095, —0.11 + 0.09j,
—0.06 4+ 0.115,—0.06 - 0.115 ]7,
Cma = —0.67+1.315,—0.67 — 1.31j,
—0.59 + 2.895, —0.59 — 2.89; ]

We also find the natural frequencies and damping ratios,
shown in table 1 and 2, of the realization models from
(3.14) according to the system model orders for three
cases of the Markov parameter numbers.

The Fig. 3 represent the error bound of singular value
for the Markov parameter {r2%®} given by (2.10), as
expressed in (2.22), in sense of the Ho, approximation.
The singular values for the Markov parameter {r3!?} are
also plotted in Fig. 3. The error bounds of the squared
singular values for the three sequences {rj'?}, {ri%%4}
and {rz®®}. are also plotted in the Fig 4.
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