• Title/Summary/Keyword: Dirichlet's theorem

Search Result 32, Processing Time 0.026 seconds

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.707-720
    • /
    • 2014
  • We get a theorem which shows the existence of at least three solutions for some elliptic system with Dirichlet boundary condition. We obtain this result by using the finite dimensional reduction method which reduces the infinite dimensional problem to the finite dimensional one. We also use the critical point theory on the reduced finite dimensioal subspace.

PERIODIC SOLUTIONS FOR NONLINEAR PARABOLIC SYSTEMS WITH SOURCE TERMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.553-564
    • /
    • 2008
  • We have a concern with the existence of solutions (${\xi},{\eta}$) for perturbations of the parabolic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\xi}_t=-L{\xi}+{\mu}g(3{\xi}+{\eta})-s{\phi}_1-h_1(x,t)\;in\;{\Omega}{\times}(0,2{\pi}),\\{\eta}_t=-L{\eta}+{\nu}g(3{\xi}+{\eta})-s{\phi}_1-h_2(x,t)\;in\;{\Omega}{\times}(0,2{\pi})\end{array}.$$ We prove the uniqueness theorem when the nonlinearity does not cross eigenvalues. We also investigate multiple solutions (${\xi}(x,t),\;{\eta}(x,t)$) for perturbations of the parabolic system with Dirichlet boundary condition when the nonlinearity f' is bounded and $f^{\prime}(-{\infty})<{\lambda}_1,{\lambda}_n<(3{\mu}+{\nu})f^{\prime}(+{\infty})<{\lambda}_{n+1}$.

  • PDF

SOLVABILITY FOR A CLASS OF THE SYSTEMS OF THE NONLINEAR ELLIPTIC EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Let ${\Omega}$ be a bounded subset of $\mathbb{R}^n$ with smooth boundary. We investigate the solvability for a class of the system of the nonlinear elliptic equations with Dirichlet boundary condition. Using the mountain pass theorem we prove that the system has at least one nontrivial solution.

CONTRACTION MAPPING PRINCIPLE AND ITS APPLICATION TO UNIQUENESS RESULTS FOR THE SYSTEM OF THE WAVE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.197-203
    • /
    • 2008
  • We show the existence of the unique solution of the following system of the nonlinear wave equations with Dirichlet boundary conditions and periodic conditions under some conditions $U_{tt}-U_{xx}+av^+=s{\phi}_{00}+f$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, ${\upsilon}_{tt}-{\upsilon}_{xx}+bu^+=t{\phi}_{00}+g$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, where $u^+$ = max{u, 0}, s, t ${\in}$ R, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator. We first show that the system has a positive solution or a negative solution depending on the sand t, and then prove the uniqueness theorem by the contraction mapping principle on the Banach space.

Nonlinear Elliptic Equations under Dirichlet boundary Condition (Dirichlet 경계조건하에서의 비선형 타원형 방정식)

  • Han, Chun-Ho;Kim, Zheng-Guo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.61-67
    • /
    • 1998
  • 이 논문에서는 Diruchlet 경계 조건을 갖는 비선형 타원형 방정식 $-{\Delta}u+g(u)=f(x)$의 해의 존재에 대한 연구를 하였다. 존재하는 해의 다중성을 증명하기 위하여 임계점 이론과 롤의 정리를 사용하였으며, 대응되는 범함수에 따라서 방정식의 해와 임계점이 동시에 나타난다는 정리를 이용하였다. 이 때 $g(u)=bu^+-au^-$으로 나타날 때 외력항 (방정식의 우변)의 상수로 주어지는 경우 적어도 두 개의 해가 존재한다는 것을 증명하였다. 만약 우변(외력항)의 상수가 음수이거나 0인 경우이 방정식의 해가 존재하지 않거나 자명한 해만 존재하기 때문에 상수는 양수인 것으로 가정하였다.

  • PDF

On the study of Waterman with respect to Bounded Variation (유계변동과 관련된 Waterman의 연구에 대하여)

  • Kim Hwa-Jun
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.115-124
    • /
    • 2006
  • Functions of bounded variation were discovered by Jordan in 1881 while working out the proof of Dirichlet concerning the convergence of Fourier series. Here, we investigate Waterman's study with respect to bounded variation and its application on a closed bounded interval. The value of his study is whether Dirichlet-Jordan theorem holds in which function classes or not and summability method is what modifies its Fourier coefficients to make resulting series converge to the associated function. We have a view that the directions of future research with respect to bounded variation are two things; one is to find the function spaces which are larger than HBV and smaller than ${\phi}BV$, and the other is to find a fields of applications.

  • PDF

BOUNDARY VALUE PROBLEM FOR A CLASS OF THE SYSTEMS OF THE NONLINEAR ELLIPTIC EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • We show the existence of at least two nontrivial solutions for a class of the systems of the nonlinear elliptic equations with Dirichlet boundary condition under some conditions for the nonlinear term. We obtain this result by using the variational linking theory in the critical point theory.

  • PDF

NONLINEAR BIHARMONIC PROBLEM WITH VARIABLE COEFFICIENT EXPONENTIAL GROWTH TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.277-288
    • /
    • 2010
  • We consider the nonlinear biharmonic equation with coefficient exponential growth term and Dirichlet boundary condition. We show that the nonlinear equation has at least one bounded solution under the suitable conditions. We obtain this result by the variational method, generalized mountain pass theorem and the critical point theory of the associated functional.

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

REDUCTION METHOD APPLIED TO THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • We consider the semilinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the semilinear biharmonic boundary value problem. We show this result by using the critical point theory, the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.