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SOLVABILITY FOR A CLASS OF THE SYSTEMS OF THE

NONLINEAR ELLIPTIC EQUATIONS

Tacksun Jung and Q-Heung Choi

Abstract. Let Ω be a bounded subset of Rn with smooth boundary. We
investigate the solvability for a class of the system of the nonlinear elliptic
equations with Dirichlet boundary condition. Using the mountain pass

theorem we prove that the system has at least one nontrivial solution.

1. Introduction

Let Ω be a bounded subset of Rn with smooth boundary. Let 0 < λ1 <
λ2 ≤ · · · ≤ λk ≤ · · · be the eigenvalues of the eigenvalue problem for a single
elliptic equation −∆u = λu with Dirichlet boundary condition and ϕk be the
eigenfunction corresponding to the eigenvalue λk, k ≥ 1. Let F : Rn → R be a
C2 function such that F (0, . . . , 0) = 0. In this paper we are concerned with the
multiplicity of the solutions for a class of the system of the nonlinear elliptic
equations with Dirichlet boundary condition

(1.1)

−∆u1 = Fu1(u1, . . . , un) in Ω,

−∆u2 = Fu2(u1, . . . , un) in Ω,

...
...

...

−∆un = Fun(u1, . . . , un) in Ω,

ui(x) = 0 on ∂Ω,

where ui(x) ∈ W 1,2
0 (Ω) and Fui(u1, . . . , un) =

∂F (u1,...,un)
∂ui

. Let U = (u1, . . . ,

un), FU (U) = gradF (U) = (Fu1(u1, . . . , un), . . . , Fun(u1, . . . , un)) and | · | de-
note the Euclidean norm in Rn. Let H be a Cartesian product of the Sobolev
spaces W 1,2

0 (Ω,R), i.e., H = W 1,2
0 (Ω,R) × · · · × W 1,2

0 (Ω,R). We endow the

Received November 7, 2008; Revised July 1, 2011.
2010 Mathematics Subject Classification. 35J50, 35J55, 35J20, 35Q72.
Key words and phrases. system of nonlinear elliptic equations, mountain pass theorem,

(P.S.) condition, critical point theory.

c⃝2012 The Korean Mathematical Society

1



2 TACKSUN JUNG AND Q-HEUNG CHOI

Hilbert space H with the norm

∥U∥2 =

n∑
i=1

∥ui∥2,

where ∥ui∥2 =
∫
Ω
|∇ui(x)|2dx.

We assume that F satisfies the following conditions:

(F1) lim(u1,...,un)→(0,...,0)
Fui

(U)

∥U∥ = 0,

(F2) lim∥U∥→∞
Fui

(U)

∥U∥ = ∞, i = 1, . . . , n,

(F3) U · FU (U) ≥ µF (U) ∀u,
(F4) |Fr1(r1, . . . , rn)| + · · · + |Frn(r1, . . . , rn)| ≤ γ(|r1|ν + · · · + |rn|ν),

∀r1, . . . , rn, where γ ≥ 0, µ ∈]2, 2∗[, ν ≤ 2∗ − 1 − (2∗ − µ)(1 − 2∗′

2∗ ),
i = 1, . . . , n.

Some papers of Lee [13, 16, 17, 18] concerning the semilinear elliptic system
and some papers of the other several authors [10, 15] have treated the system
of this kind nonlinear elliptic equations. In [1, 2, 3, 7] the authors studied the
existence of solutions of the single elliptic equation. In [4, 5, 6, 8, 9, 11, 12, 14,
19, 20, 21] the authors used variational methods and critical point theory for
the existence and multiplicity of solutions of boundary value problems.

System (1.1) can be rewritten by

−∆U = ∇F (U) in Ω,

U = 0 on ∂Ω.

In this paper we are looking for the weak solutions of the system (1.1) in H,
that is, U = (u1 . . . , un) ∈ H such that∫

Ω

[−∆U · V ]dx−
∫
Ω

FU (U) · V = 0 for all V ∈ H,

where FU (U) = ∇F (U) = (Fu1(U), . . . , Fun(U)).

Our main result is the following:

Theorem 1.1. Assume that F satisfies the conditions (F1)-(F4). Then the
system (1.1) has at least one nontrivial solution.

For the proof of Theorem 1.1 we approach the variational method and use
the generalization of the mountain pass theorem. In Section 2, we obtain some
results on the operator −∆ onW 1,2

0 (Ω), F , the functional I onH, and recall the
generalization of the mountain pass theorem. In Section 3, we prove Theorem
1.1 by the mountain pass theorem.

2. Some results on −∆, F , I and generalized mountain pass
theorem

In this section we obtain some results on the operator −∆ on W 1,2
0 (Ω),

F , the functional I on H, and recall the generalization of the mountain pass
theorem. Since λi > 0 for all i ≥ 1, we have the following lemma.
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Lemma 2.1. Let u ∈ W 1,2
0 (Ω,R) and ∥ · ∥ be a Sobolev norm. Then

(i) ∥u∥ ≥ C∥u∥L2(Ω) for some constant C > 0,
(ii) ∥u∥ = 0 if and only if ∥u∥L2(Ω) = 0,

(iii) −∆u ∈ W 1,2
0 (Ω,R) implies u ∈ W 1,2

0 (Ω,R).

Proof. (i) Let λj be an eigenvalue of the eigenvalue problem for a single elliptic

equation −∆u = λu in Ω with Dirichlet boundary condition. If u ∈ W 1,2
0 (Ω,R),

then u can be expressed by

u =
∑

cjϕj .

Thus we have that

∥u∥2 =

∫
Ω

|∇u(x)|2dx =

∫
Ω

(−∆u)udx =
∑

λjc
2
j ≥ λ1

∑
c2j = λ1∥u∥L2(Ω).

Therefore we have that ∥u∥2 ≥ C∥u∥L2(Ω), where C = λ1.
(ii) is trivial.

(iii) Let us set f = −∆u ∈ W 1,2
0 (Ω,R). Then f can be expressed by

f =
∑

hjϕj .

Then

(−∆)−1f =
∑ 1

λj
hjϕj .

Hence we have the inequality

∥u∥2 = ∥(−∆)−1f∥2 =
∑

λ2
j

1

λ2
j

h2
j =

∑
h2
j ,

which means that

∥(−∆)−1f∥ = ∥f∥L2(Ω). □

From Lemma 2.1, we have:

Lemma 2.2. Let ∇F (U) ∈ H = W 1,2
0 (Ω,R)× · · · ×W 1,2

0 (Ω,R). Then all the
solutions of

−∆U = ∇F (U)

belong to H.

Now we return to the case of the system. We observe that by the following
Proposition 2.1, the weak solutions of system (1.1) coincide with the critical
points of the associated functional I

I ∈ C1,1(H,R),

(2.1) I(U) =

∫
Ω

[
1

2
|∇U |2 − F (x,U)

]
dx,

where U = (u1, . . . , un) and |∇U |2 =
∑n

i=1 |∇ui|2, n ≥ 1.



4 TACKSUN JUNG AND Q-HEUNG CHOI

Proposition 2.1. Assume that the conditions (F1)-(F4) hold. Then the func-
tional I(u) is continuous, Fréchet differentiable in H with Fréchet derivative

∇I(U)V =

∫
Ω

[(−∆U) · V − FU (U) · V ]dx.

Moreover DI ∈ C. That is I ∈ C1.

Proof. First we prove that I(U) is continuous in H. For U, V ∈ H,

|I(U + V )− I(U)| =
∣∣∣∣12
∫
Ω

(−∆U −∆V ) · (U + V )dx−
∫
Ω

F (U + V )dx

−1

2

∫
Ω

(−∆U) · Udx+

∫
Ω

F (U)dx

∣∣∣∣
=

∣∣∣∣12
∫
Ω

[(−∆U · V −∆V · U −∆V · V )dx

−
∫
Ω

(F (U + V )− F (U))dx

∣∣∣∣ .
Let ul =

∑
hl
jϕj , vl =

∑
kljϕj (l = 1, . . . , n). Then we have∣∣∣∣∫

Ω

(−∆ul) · vldx
∣∣∣∣ = ∣∣∣∑λjh

l
jk

l
j

∣∣∣ ≤ ∥ul∥ · ∥vl∥,∣∣∣∣∫
Ω

(−∆vl) · uldx

∣∣∣∣ = ∣∣∣∑λjk
l
jh

l
j

∣∣∣ ≤ ∥ul∥ · ∥vl∥,∣∣∣∣∫
Ω

(−∆vl) · vldx
∣∣∣∣ = ∣∣∣∑λjk

l
jk

l
j

∣∣∣ ≤ ∥vl∥2,

from which we have∣∣∣∣12
∫
Ω

(−∆U · V −∆V · U −∆V · V )dx

∣∣∣∣ ≤ C(∥U∥ · ∥V ∥+ ∥V ∥2)

for some C > 0. By the differentiability of F ,

F (U + V )− F (U) = FU (U)V + o(|V |),
so we have∣∣∣∣∫

Ω

(F (U + V )− F (U))dx

∣∣∣∣ ≤ ∥FU (U)∥L2(Ω)∥V ∥L2(Ω) +

∫
Ω

o(|V |)dx

≤ ∥FU (U)∥∥V ∥+ o(∥V ∥).
Thus we have

|I(U + V )− I(U)| ≤ (C∥U∥+ ∥FU (U)∥)∥V ∥+ o(∥V ∥) + C∥V ∥2,
so I(U) is continuous at U .

Next we will prove that I(U) is Fréchet differentiable in H with Fréchet
derivative ∇I(U). For U, V ∈ H,

|I(U + V )− I(U)−∇I(U)V |
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=

∣∣∣∣12
∫
Ω

(−∆U −∆V ) · (U + V )dx−
∫
Ω

F (U + V )dx

−1

2

∫
Ω

(−∆U) · Udx+

∫
Ω

F (U)dx−
∫
Ω

(−∆U − FU (U)) · V dx

∣∣∣∣
=

∣∣∣∣12
∫
Ω

[−∆V · V ]dx−
∫
Ω

[F (U + V )− F (U)− FU (U) · V ]dx

∣∣∣∣ .
By the differentiability of F , F (U +V )−F (U) = FU (U)V +o(|V |), so we have

F (U + V )− F (U)− FU (U)) · V = o(|V |).

Thus we have

(2.2)

∣∣∣∣∫
Ω

[F (U + V )− F (U)− FU (U)V ]dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

o(|V |)dx
∣∣∣∣ = o(∥V ∥).

Thus we have

(2.3) |I(U + V )− I(U)−∇I(U)V | = O(∥V ∥2).

Similarly, it is easily checked that I ∈ C1. □

Proposition 2.2. Assume that F satisfies the conditions (F1)-(F4). Then
there exist a0 > 0, b0 ∈ R and µ > 2 such that

(2.4) F (U) ≥ a0|U |µ − b0, ∀U.

Proof. Let U be such that |U |2 ≥ R2. Let us set φ(ξ) = F (ξU) for ξ ≥ 1.
Then

φ′(ξ) = U · FU (ξU) ≥ µ

ξ
φ(ξ).

Multiplying by ξ−µ, we get

(ξ−µφ(ξ))′ ≥ 0,

hence φ(ξ) ≥ φ(1)ξµ for ξ ≥ 1. Thus we have

F (U) ≥ F

(
R|U |√
|U |2

)(√
|U |2
R

)µ

≥ c0

(√
|U |2
R

)µ

≥ a0|U |µ − b0

for some a0, b0, where c0 = inf{F (U)| |U |2 = R2}. □

Proposition 2.3. Assume that F satisfies the conditions (F1)-(F4). Then if
∥Uj∥ → +∞ and ∫

Ω
Uj · FU (Uj)dx− 2

∫
Ω
F (Uj)dx

∥Uj∥
→ 0,

then there exist (Uhj )j and W ∈ H such that

grad(
∫
Ω
F (Uhj )dx)

∥Uhj
∥

→ W and
Uhj

∥Uhj
∥
⇀ (0, . . . , 0).
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Proof. By (F3) and Proposition 2.2, for U ∈ H,∫
Ω

[u · FU (U)]dx− 2

∫
Ω

F (U)dx ≥ (µ− 2)

∫
Ω

F (U)dx

≥ (µ− 2)(a0∥U∥µLµ − b1).

By (F4), ∥∥∥∥grad(∫
Ω

F (U)dx

)∥∥∥∥ ≤ C ′∥|U |ν∥L2∗′

for suitable constant C ′. To get the conclusion it suffices to estimate ∥ |U |ν
∥U∥ ∥L2∗′

in terms of
∥U∥µ

Lµ

∥U∥ . If µ ≥ 2∗′ν, then this is a consequence of Hölder inequality.

Next we consider the case µ < 2∗′ν. By the assumptions µ and ν,

(2.5) ν ≤ 2∗ − 1− (2∗ − µ)(1− 2∗′

2∗
).

By the standard interpolation arguments, it follows that∥∥∥∥ |U |ν

∥U∥

∥∥∥∥
L2∗′

≤ C

(
∥U∥µLµ

∥U∥

) να
µ

∥U∥β ,

where α is such that α
µ + 1−α

2∗ = 1
2∗′ν (α > 0) and β = (1− α)ν − 1− να

µ . By

(2.5), β ≤ 0. Thus we prove the proposition. □

For finding at least one nontrivial solution we shall use the following gener-
alization of the mountain pass theorem (cf. Theorem 5.3 of [22]).

Lemma 2.3 (Generalization of the Mountain Pass Theorem). Let H be a real
Banach space with H = V ⊕X, where V is finite dimensional. Suppose that

(I1) I ∈ C1(H,R),
(I2) there are constants ρ, α > 0 and a ball Bρ with radius ρ such that

I∂Bρ∩X ≥ α,

and
(I3) there is an e ∈ ∂B1∩X and R > ρ such that if Q ≡ (B̄R∩V )⊕{re| 0 <

r < R}, then
I|u∈∂Q ≤ 0.

(I4) I satisfies the (P.S.) condition.
Then I possesses a critical value c ≥ α which can be characterized as

c = inf
γ∈Γ

max
u∈Q

I(γ(u)),

where

Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.
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3. Proof of Theorem 1.1

From now on we shall show that I satisfies the conditions (I1)-(I4) under
the assumptions (F1)-(F4). Assume that the (F1)-(F4) hold.

We have the following inequalities:

Lemma 3.1. Assume that F satisfies the conditions (F1)-(F4). Let Vi be the

finite dimensional subspace of W 1,2
0 (Ω) spanned by eigenfunctions correspond-

ing to the eigenvalues λ < λki , for some ki ≥ 1 (i = 1, . . . , n). Let us set

V = V1 × · · · × Vn.

Then V is a subspace of H and H = V ⊕ V ⊥. Let us set X = V ⊥. Then
(i) there exist ρ > 0 and a small ball Bρ with radius ρ such that

inf
U∈∂Bρ∩X

I(U) > 0, inf
U∈Bρ∩X

I(U) > −∞

and
(ii) there exist e ∈ ∂B1 ∩X and Q ≡ (B̄R ∩ V )⊕ {re| 0 < r < R} such that

sup
U∈∂Q

I(U) < 0.

Proof. First we will prove that there exist ρ > 0 and a ball Bρ with radius ρ
such that Brho ∩X ̸= ∅ and infU∈∂Bρ∩X I(U) > 0. Let U ∈ X. Then we have
that

I(U) =
1

2
∥U∥2 −

∫
Ω

F (U)dx.

By (F3) and (F4), F (U) ≤ a|U |β , a > 0 and β > 2. So we have

I(U) ≥ 1

2
∥U∥2 − a∥U∥βL2(Ω).

Since β > 2, there exist a small number ρ > 0 and a small ball Bρ with radius
ρ such that if U ∈ ∂Bρ ∩X, then infU∈∂Bρ∩X I(U) > 0 and infU∈Bρ∩X I(U) >

−∞. Next, we will prove that there exist e ∈ ∂B1 ∩X and Q = (B̄R ∩ V ) ⊕
{re| 0 < r < R} such that supU∈∂Q I(U) < 0. Let us choose an element e ∈ X
with ∥e∥ = 1 and U ∈ V ⊕ {re| r > 0}. Let PY be a projection from H onto a
subspace Y of H. Then we have

I(U) =
1

2
r2 +

1

2
∥PV U∥2 −

∫
Ω

F (U)dx.

By Proposition 2.2, there exist a0 > 0, b0 ∈ R and µ > 2 such that F (U) ≥
a0|U |µ − b0, ∀u. Thus we have

I(U) ≤ 1

2
r2 +

1

2
∥PV U∥2 − a0∥U∥µL2(Ω) + b0.

Since µ > 2, there exists R > ρ such that if U ∈ ∂((B̄R∩V )⊕{re| 0 < r < R}),
then I(U) < 1

2R
2+ 1

2R
2−a0∥U∥µL2(Ω)+b0 < 0. Thus we have supU∈∂Q I(U) < 0,

where Q = (B̄R ∩ V )⊕ {re| 0 < r < R}. □
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Lemma 3.2. Assume that F satisfies the conditions (F1)-(F4) hold. Then I
satisfies the (P.S.) condition.

Proof. Let c ∈ R, j → +∞ and (Uj)j be a sequence such that

Uj = (uj
1, . . . , u

j
n) ∈ H, ∀j, I(Uj) → c,∇I(Uj) → 0.

We claim that (Uj)j is bounded. By contradiction we suppose that ∥Uj∥ → +∞
and set Ûj =

Uj

∥Uj∥ . Then

⟨∇I(UU ), Ûj⟩ = 2
I(Uj)

∥Uj∥
−
∫
Ω
FU (Uj) · Ujdx− 2

∫
Ω
F (Uj)dx

∥Uj∥
−→ 0.

Hence ∫
Ω
FU (Uj) · Ujdx− 2

∫
Ω
F (Uj)dx

∥Uj∥
−→ 0.

By Proposition 2.3,

grad
∫
Ω
F (Uj)dx

∥Uj∥
converges

and ûn ⇀ 0. We get

∇I(Uj)

∥Uj∥
= −∆Ûj −

grad(
∫
Ω
F (Uj)dx)

∥Uj∥
−→ 0,

so −∆Ûj converges. Since (Ûj)j is bounded and the inverse operator of −∆ is a

compact mapping, up to subsequence, (Ûj)j has a limit. Since Ûj ⇀ (0, . . . , 0),

we get Ûj → (0, . . . , 0), which is a contradiction to the fact that ∥Ûj∥ = 1. Thus
(Uj)j is bounded. We can now suppose that Uj ⇀ U for some U ∈ H. Since the
mapping U 7→ grad(

∫
Ω
F (U)dx) is a compact mapping, grad(

∫
Ω
F (Uj)dx) −→

grad(
∫
Ω
F (U)dx). Thus −∆Uj converges. Since the inverse operator of −∆ is a

compact operator and (Uj)j is bounded, we deduce that, up to a subsequence,
(Uj)j converges to some U strongly with ∇I(U) = lim∇I(Uj) = 0. Thus we
prove the lemma. □

Proof of Theorem 1.1. Let Vi be the finite dimensional subspace of W 1,2
0 (Ω)

spanned by eigenfunctions corresponding to the eigenvalues λ < λki , for some
ki ≥ 1 (i = 1, . . . , n). Let us set

V = V1 × · · · × Vn.

Then V is a subspace of H and H = V ⊕ V ⊥. Let us set X = V ⊥. By
Proposition 2.1, I is C1(H,R), so the condition (I1) of Lemma 2.3 is satisfied.
By Lemma 3.1, the conditions (I2) and (I3) of Lemma 2.3 are satisfied. By
Lemma 3.2, I(U) satisfies the (P.S.) condition, so the condition (I4) of Lemma
2.3 is satisfied. Thus by Lemma 2.3, there exists at least one nontrivial critical
point for I whose critical value is

I(U) = inf
γ∈Γ

max
U∈Q

I(γ(U)),



SOLVABILITY FOR A CLASS OF THE SYSTEMS 9

where Γ = {γ ∈ C(Q̄,H)|γ = id on ∂Q}. Thus we prove the theorem. □
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