• 제목/요약/키워드: Digital-to-Analog-Converter

검색결과 566건 처리시간 0.114초

An Effective Storage Method During A Sampling of Speech Signals (음성신호를 표본화할 동안 효율적인 실시간 저장기법)

  • Bae, Myungjin;Lee, Inseop;ANN, Souguil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제24권3호
    • /
    • pp.394-399
    • /
    • 1987
  • It is necessary for the speech samples to be stored in memory buffer before speech analyzers without a real time processor process them. In this paper, we propose an algorithm that uses the buffer efficiently, when the analog speech signal is converted to the digital samples by the analog to digital converter. In order to implement this method in real time, the buffer is divided into the starting buffer and the remaining buffer. Until a voiced speech is found, the converted samples are sequentially stored in the starting buffer, and then the buffer is shifted. When a voiced speech is found, the next samples are sequentally recorded in the remaining buffer.

  • PDF

Design of a High-Resolution DCO Using a DAC (DAC를 이용한 고해상도 DCO 설계)

  • Seo, Hee-Teak;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제15권7호
    • /
    • pp.1543-1551
    • /
    • 2011
  • Dithering scheme has been widely used to improve the resolution of DCO(Digitally Controlled Oscillator) in conventional ADPLLs(All Digital Phase Locked Loop). In this paper a new resolution improvement scheme is proposed where a simple DAC(Digital-to-Analog Converter) is employed to overcome the problems of dithering scheme. The frequencies are controled by varactors in coarse, fine, and DAC bank. The DAC bank consists of an inversion mode NMOS varactor. The other varactor banks consist of PMOS varactors. Each varactor bank is controlled by 8bit digital signal. The proposed DCO has been designed in a $0.13{\mu}m$ CMOS process. Measurement results shows that the designed DCO oscillates in 2.8GHz~3.5GHz and has a frequency tuning range of 660MHz and a resolution of 73Hz at 2.8GHz band. The designed DCO exhibits a phase noise of -119dBc/Hz at lMHz frequency offset. The DCO core consumes 4.2mA from l.2V supply. The chip area is $1.3mm{\times}1.3mm$ including pads.

A 2.5 V 10b 120 MSample/s CMOS Pipelined ADC with High SFDR (높은 SFDR을 갖는 2.5 V 10b 120 MSample/s CMOS 파이프라인 A/D 변환기)

  • Park, Jong-Bum;Yoo, Sang-Min;Yang, Hee-Suk;Jee, Yong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제39권4호
    • /
    • pp.16-24
    • /
    • 2002
  • This work describes a 10b 120 MSample/s CMOS pipelined A/D converter(ADC) based on a merged-capacitor switching(MCS) technique for high signal processing speed and high resolution. The proposed ADC adopts a typical multi-step pipelined architecture to optimize sampling rate, resolution, and chip area, and employs a MCS technique which improves sampling rate and resolution reducing the number of unit capacitor used in the multiplying digital-to-analog converter (MDAC). The proposed ADC is designed and implemented in a 0.25 um double-poly five-metal n-well CMOS technology. The measured differential and integral nonlinearities are within ${\pm}$0.40 LSB and ${\pm}$0.48 LSB, respectively. The prototype silicon exhibits the signal-to-noise-and-distortion ratio(SNDR) of 58 dB and 53 dB at 100 MSample/s and 120 MSample/s, respectively. The ADC maintains SNDR over 54 dB and the spurious-free dynamic range(SFDR) over 68 dB for input frequencies up to the Nyquist frequency at 100 MSample/s. The active chip area is 3.6 $mm^2$(= 1.8 mm ${\times}$ 2.0 mm) and the chip consumes 208 mW at 120 MSample/s.

Pipelined A/D Converter with Multiple S/H Stage Structure (여러개의 S/H단 구조를 가지는 파이프라인 A/D변환기)

  • Cho Seong-Ik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제54권3호
    • /
    • pp.186-190
    • /
    • 2005
  • In this paper, the pipelined A/D converter with multi S/H stage structure is proposed for high resolution and high-speed data conversion rate. In order to improve a resolution and operational speed, the proposed structure increased the sampling time that is sampled input signal. In order to verify the operation characteristics, 20MS/s pipelined A/D converter is designed with two S/H stage. The simulation result shows that INL and DNL are $0.52LSB\~-0.63LSB$ and $0.53LSB\~-0.56LSB$, respectively. Also, the designed Analog-to-Digital converter has the SNR of 43dB and power consumption is 18.5mW.

A Study of Quantization Effect in Kalman Filtering (Kalman filter의 Quantization 영향분석)

  • Shin, Sang-Jin;Song, Taek-Lyul;Kwag, Yong-Kil;Lee, Kang-Hun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2335-2337
    • /
    • 2004
  • Kalman filter를 필터링에 적용할 때에 센서의 아날로그 신호에 들어오는 측정값의 잡음은 Gaussian 확률분포를 갖는다고 가정한다. 그러나 Kalman filter를 digital 컴퓨터에 적용할 경우에는 analog-to-digital converter에서 측정값의 잡음이외에도 quantization 잡음이 존재하며 본 논문에서는 이러한 경우에 quantization 영향이 Kalman filter 알고리듬에 미치는 영향을 수치적으로 분석하여 quantization을 Kalman filter 구현에 고려해야 될 사항으로 분류하고자 한다.

  • PDF

Design of a CMOS Image Sensor Based on a Low Power Single-Slope ADC (저전력 Single-Slope ADC를 사용한 CMOS 이미지 센서의 설계)

  • Kwon, Hyuk-Bin;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제48권2호
    • /
    • pp.20-27
    • /
    • 2011
  • A CMOS Image Sensor(CIS) mounted on mobile appliances always needs a low power consumption because of the battery life cycle. In this paper, we propose novel power reduction techniques such as a data flip-flop circuit with leakage current elimination, a low power single slope A/D converter with a novel comparator, and etc. Based on 0.13um CMOS process, the chip satisfies QVGA resolution($320{\times}240$ pixels) whose pitch is 2.25um and whose structure is 4-Tr active pixel sensor. From the experimental results, the ADC in the middle of CIS has a 10-b resolution, the operating speed of CIS is 16 frame/s, and the power dissipation is 25mW at 3.3V(Analog)/1.8V(Digital) power supply. When we compare the proposed CIS with conventional ones, the power consumption is reduced approximately by 22% in sleep mode, 20% in operating mode.

Development of the Digital Controller for High Precision Digital Power Supply (고정밀전원장치를 위한 디지털 제어기 개발)

  • Ha, K.M.;Lee, S.K.;Kim, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.249-250
    • /
    • 2006
  • In this paper, hardware design and implementation of digital controller for the High Precision Digital Power Supply (HPDPS) based on Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA) is presented. Developed digital controller is composed of high resolution Digital Pulse Width Modulation (DPWM) and high resolution analog to digital converter circuit with anti-aliasing filter. And Digital Signal Processor (DSP) has the capability of a few micro-second calculation time for one feedback loop. 32-bit DSP and DPWM with 150[ps] step resolution is used to implement the HPDPS. Also 18-bit 2 mega sample per second ADC board is adopted for the developed digital controller. Also, hardware structure of the developed digital controller and experimental results of the first prototype board for HPDPS is described.

  • PDF

Design of a 6-bit 500MS/s CMOS A/D Converter with Comparator-based Input Voltage Range Detection Circuit

  • Dae, Si;Yoon, Kwang Sub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.706-711
    • /
    • 2014
  • A low power 6-bit flash ADC that uses an input voltage range detection algorithm is described. An input voltage level detector circuit has been designed to overcome the disadvantages of the flash ADC which consume most of the dynamic power dissipation due to comparators array. In this work, four digital input voltage range detectors are employed and each input voltage range detector generates the specific clock signal only if the input voltage falls between two adjacent reference voltages applied to the detector. The specific clock signal generated by the detector is applied to turn the corresponding latched comparators on and the rest of the comparators off. This ADC consumes 68.82 mW with a single power supply of 1.2V and achieves 4.3 effective number of bits for input frequency up to 1 MHz at 500 MS/s. Therefore it results in 4.6 pJ/step of Figure of Merit (FoM). The chip is fabricated in 0.13-um CMOS process.

Study of High Efficiency LLC Resonant Converter for a Battery Charger of Emergency Electric Power Generator Control System (비상용 발전기 제어시스템의 배터리 충전기를 위한 고효율 LLC 공진형 컨버터의 연구)

  • Lee, Joonmin;Park, Min-Gi;Lee, Young Keun;La, Jae-Du
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제27권10호
    • /
    • pp.93-100
    • /
    • 2013
  • Generally, the conventional battery charging system using an analog method has the large, heavy hardware and low efficiency. Also, it has the disadvantage that it is necessary to replace the control circuit on the basis of the characteristic curve of the specific battery cell. The proposed programmable digital LLC resonant charging system use high efficiency control system(CC-CV), and has characteristic a small hardware and advantage that a digital programming of the voltage, current, and battery capacity characteristics can be flexible. The system proposed the use of Half-bridge LLC resonant converter is possible to improve efficiency and reduce switching losses by using ZVS topology. Further, a constant voltage - constant current(CC-CV) control algorithm apply to the charger which using a buck converter. The performance of the proposed system is demonstrated through experiments.

Critical Conduction Mode Bridgeless PFC Converter Based on a Digital Control (디지털 제어 기반의 경계점모드 브릿지리스 PFC 컨버터)

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권12호
    • /
    • pp.2000-2007
    • /
    • 2016
  • Generally, in order to implement the CRM(Critical Conduction Mode), the analog controller is used rather than a digital controller because the control is simple and uses less power. However, according to the semiconductor technology development and various user needs, digital control system based on a DSP is on the rise. Therefore, in this paper, the CRM bridgeless PFC converter based on a digital control is proposed. It is necessary to detect the inductor current when it reaches zero and peak value, for calculating the on time and off time by using the current information. However, in this paper, the on-time and off-time are calculated by using the proposed algorithm without any current information. If the switching-times are calculated through the steady-state analysis of the converter, they do not reflect transient status such as starting-up. Therefore, the calculated frequency is out of range, and the transient current is generated. In order to solve these problems, limitation method of the on-time and off-time is used, and the limitation values are varied according to the voltage reference. In addition, in steady state, depending on the switching frequency, the inductance is varied because of the resonance between the inductor and the parasitic capacitance of the switching elements. In order to solve the problem, inductance are measured depending on the switching frequency. The measured inductance are used to calculate the switching time for preventing the transient current. Simulation and experimental results are presented to verify the proposed method.