• Title/Summary/Keyword: Digital circuits

Search Result 601, Processing Time 0.025 seconds

An Efficient 5-Input Exclusive-OR Circuit Based on Carbon Nanotube FETs

  • Zarhoun, Ronak;Moaiyeri, Mohammad Hossein;Farahani, Samira Shirinabadi;Navi, Keivan
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.89-98
    • /
    • 2014
  • The integration of digital circuits has a tight relation with the scaling down of silicon technology. The continuous scaling down of the feature size of CMOS devices enters the nanoscale, which results in such destructive effects as short channel effects. Consequently, efforts to replace silicon technology with efficient substitutes have been made. The carbon nanotube field-effect transistor (CNTFET) is one of the most promising replacements for this purpose because of its essential characteristics. Various digital CNTFET-based circuits, such as standard logic cells, have been designed and the results demonstrate improvements in the delay and energy consumption of these circuits. In this paper, a new CNTFET-based 5-input XOR gate based on a novel design method is proposed and simulated using the HSPICE tool based on the compact SPICE model for the CNTFET at the 32-nm technology node. The proposed method leads to improvements in performance and device count compared to the conventional CMOS-style design.

Efficient Signature-Driven Self-Test for Differential Mixed-Signal Circuits

  • Kim, Byoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.713-718
    • /
    • 2016
  • Predicting precise specifications of differential mixed-signal circuits is a difficult problem, because analytically derived correlation between process variations and conventional specifications exhibits the limited prediction accuracy due to the phase unbalance, for most self-tests. This paper proposes an efficient prediction technique to provide accurate specifications of differential mixed-signal circuits in a system-on-chip (SoC) based on a nonlinear statistical nonlinear regression technique. A spectrally pure sinusoidal signal is applied to a differential DUT, and its output is fed into another differential DUT through a weighting circuitry in the loopback configuration. The weighting circuitry, which is employed from the previous work [3], efficiently produces different weights on the harmonics of the loopback responses, i.e., the signatures. The correlation models, which map the signatures to the conventional specifications, are built based on the statistical nonlinear regression technique, in order to predict accurate nonlinearities of individual DUTs. In production testing, once the efficient signatures are measured, and plugged into the obtained correlation models, the harmonic coefficients of DUTs are readily identified. This work provides a practical test solution to overcome the serious test issue of differential mixed-signal circuits; the low accuracy of analytically derived model is much lower by the errors from the unbalance. Hardware measurement results showed less than 1.0 dB of the prediction error, validating that this approach can be used as production test.

Design and implementation of a base station modulator ASIC for CDMA cellular system (CDMA 이동통신 시스템용 기지국 변조기 ASIC 설계 및 구현)

  • Kang, In;Hyun, Jin-Il;Cha, Jin-Jong;Kim, Kyung-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.1-11
    • /
    • 1997
  • We developed a base station modulator ASIC for CDMA digital cellular system. In CDMA digital cellular system, the modulation is performed by convolutional encoding and QPSK with spread spectrum. The function blocks of base station modulator are CRC, convolutional encoder, interleaver pseudo-moise scrambler, power control bit puncturing, walsh cover, QPSK, gain controller, combiner and multiplexer. Each function block was designed by the logic synthesis of VHDL codes. The VHDL code was described at register transfer level and the size of code is about 8,000 lines. The circuit simulation and logic simulation were performed by COMPASS tools. The chip (ES-C2212B CMB) contains 25,205 gates and 3 Kbit SRAM, and its chip size is 5.25 mm * 5,45 mm in 0.8 mm CMOS cell-based design technology. It is packaged in 68 pin PLCC and the power dissipation at 10MHz is 300 mW at 5V. The ASIC has been fully tested and successfully working on the CDMA base station system.

  • PDF

Reduction of Test Data and Power in Scan Testing for Digital Circuits using the Code-based Technique (코드 기반 기법을 이용한 디지털 회로의 스캔 테스트 데이터와 전력단축)

  • Hur, Yong-Min;Shin, Jae-Heung
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.5-12
    • /
    • 2008
  • We propose efficient scan testing method capable of reducing the test data and power dissipation for digital logic circuits. The proposed testing method is based on a hybrid run-length encoding which reduces test data storage on the tester. We also introduce modified Bus-invert coding method and scan cell design in scan cell reordering, thus providing increased power saving in scan in operation. Experimental results for ISCAS'89 benchmark circuits show that average power of 96.7% and peak power of 84% are reduced on the average without fault coverage degrading. We have obtained a high reduction of 78.2% on the test data compared the existing compression methods.

Analysis of LSI Circuits Coupled with RCG Interconnects - Asymptotic Method

  • A.Ushida;Ha, A.ttori;H.Sakaguchi;Y.Yamagami;Y.Nishio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.70-73
    • /
    • 2002
  • High frequency digital LSI circuits are usually composed of many sub-circuits coupled with interconnects. They sometimes causes serious problems of the fault switching by time-delays, crosstalks, reflections of signals and so on. Therefore, it is very important to develop a user-friendly simulator for solving these problems. Although a moment matching method is widely used as the reduction technique of interconnects, it may happen to arise erroneous results for evaluating the poles far from the origin. In this paper, we show an asymptotic method in the complex frequency-domain, where we calculate the exact poles and residues giving large effect to the transient responses. Then, the interconnects are replaced by the asymptotic equivalent circuits using the poles and residues. Thus, we can develop a users-friendly simulator using the equivalent circuits.

  • PDF

Evaluation of fault coverage of digital circutis using initializability of flipflops (플립플롭의 초기화 가능성을 고려한 디지탈 회로에 대한 고장 검출율의 평가 기법)

  • 민형복;김신택;이재훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.11-20
    • /
    • 1998
  • Fault simulatior has been used to compute exact fault coverages of test vectors for digial circuits. But it is time consuming because execution time is proportional to square of circuit size. Recently, several algorithms for testability analysis have been published to cope with these problems. COP is very fast and accurate but cannot be used for sequential circuits, while STAFAN can be used for sequential circuits but needs vast amount of execution time due to good circuit simulation. We proposed EXTASEC which gave fast and accurate fault coverage. But it shows noticeable errors for a few sequential circuits. In this paper, it is shown that the inaccuracy is due to uninitializble flipflops, and we propose ITEM to improve the EXTASEC algorithm. ITEM is an improved evaluation method of fault coverage by analysis of backward lines and uninitializable flipflops. It is expected to perform efficiently for very large circuits where execution time is critical.

  • PDF

New Scan Design for Delay Fault Testing of Sequential Circuits (순차 회로의 지연 고장 검출을 위한 새로운 스캔 설계)

  • 허경회;강용석;강성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1161-1166
    • /
    • 1999
  • Delay testing has become highlighted in the field of digital circuits as the speed and the density of the circuits improve greatly. However, delay faults in sequential circuits cannot be detected easily due to the existence of state registers. To overcome this difficulty a new scan filp-flop is devised which can be used for both stuck-at testing and delay testing. In addition, the new scan flip-flop can be applied to both the existing functional justification method and the newly-developed reverse functional justification method which uses scan flip-flops as storing the second test patterns rather than the first test patterns. Experimental results on ISCAS 89 benchmark circuits show that the number of testable paths can be increased by about 10% on the average.

  • PDF

Si PIN Radiation Sensor with CMOS Readout Circuit

  • Kwon, Yu-Mi;Kang, Hee-Sung;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Silicon PIN diode radiation sensors and CMOS readout circuits were designed and fabricated in this study. The PIN diodes were fabricated using a 380-${\mu}m$-thick 4-inch n+ Si (111) wafer containing a $2-k{\Omega}{\cdot}cm$ n- thin epitaxial layer. CMOS readout circuits employed the driving and signal processes in a radiation sensor were mixed with digital logic and analog input circuits. The primary functions of readout circuits are amplification of sensor signals and the generation of the alarm signals when radiation events occur. The radiation sensors and CMOS readout circuits were fabricated in the Institute of Semiconductor Fusion Technology (ISFT) semiconductor fabrication facilities located in Kyungpook National University. The performance of the readout circuit combined with the Si PIN diode sensor was demonstrated.

Performance Evaluation of Symbol Timing Algorithm for QPSK Modulation Technique in Digital Receiver (QPSK변조기법을 위한 Digital 수신기의 심볼동기 알고리즘 성능평가)

  • 송재철;고성찬;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1299-1310
    • /
    • 1992
  • Recently, digital realizations of timing recovery circuits for digital data transmission are of growing interest. As a result of digital realization of timing recovery circuits, new digital algorithms for timing error detection are required. In this paper, we present a new digital Angular Form(AF) algorithm which can be directly applied to QPSK modulation technique. AF algorithm is basically developed on the concepts of detected angle form and transition logic table. We evaluated the performance of this algorithm by Monte-Carlo simulation method under Gaussian and Impulsive noise environments. From the performance evaluation result, we show that the performance of AF Algorithm is better than that of Gardner in BER, RMS jitter, S-curve.

  • PDF

Specification-based Analog Circuits Test using High Performance Current Sensors (고성능 전류감지기를 이용한 Specification 기반의 아날로그 회로 테스트)

  • Lee, Jae-Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1260-1270
    • /
    • 2007
  • Testing and diagnosis of analog circuits(or mixed-signal circuits) continue to be a hard task for test engineers and efficient test methodologies to solve these problems are needed. This paper proposes a novel analog circuits test technique using time slot specification (TSS) based built-in current sensors (BICS). A technique for location of a fault site and separation of fault type based on TSS is also presented. The proposed built-in current sensors and TSS technique has high testability, fault coverage and a capability to diagnose catastrophic faults and parametric faults in analog circuits. In order to reduce time complexity of test point insertion procedure, external output and power nodes are used for test points and the current sensors are implemented in the automatic test equipment(ATE). The digital output of BICS can be easily combined with built-in digital test modules for analog IC test.

  • PDF