• Title/Summary/Keyword: Digital Phase-Locked Loop

Search Result 157, Processing Time 0.019 seconds

Design and implementation of 3 kW Photovoltaic Power Conditioning System using a Current based Maximum Power Point Tracking (전류형 MPPT를 이용한 3 kW 태양광 인버터 시스템 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1796-1801
    • /
    • 2008
  • In this paper, a new current based maximum power point tracking (CMPPT) method is proposed for a single phase photovoltaic power conditioning system and the current based MPPT modifies incremental conductance method. The current based MPPT method makes the entire control structure of the power conditioning system simple and uses an inherent current source characteristic of solar cell array. In addition, digital phase locked loop using an all pass filter is introduced to detect phase of grid voltage as well as peak voltage. Controllers about dc/dc boost converter, dc-link voltage, dc/ac inverter is designed for a coordinated operation. Furthermore, PI current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. 3kW prototype photovoltaic power conditioning system is built and its experimental results are given to verify the effectiveness of the proposed control schemes.

Analysis of a First Order Multilevel Quantized DPLL with Phase-and Frquency-Step Input (다치 량자화한 일차 DPLL의 위상과 주파수 스텝 입력에 대한 해석)

  • 배건성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.4
    • /
    • pp.55-60
    • /
    • 1983
  • A new type of digital phase-locked loop (DPLL) that employs a multilevel quantified timing error detector (TED) is proposed and analyzed under the assumption of negligible quantizing effect and no noise. Since the timing error is quantized uniformly, the TED has a linear characteristic. From the linear characteristic of TED, a first order difference equation describing the behavior of the loop is derived. Using the system equation, the loop is analyzed mathematically for phase step and frequency step input. Desired locking condition for the loop to be locked and the lock range for the DPLL's to achieve exact locking independently of initial conditions are ob-tained. And these analyses are confirmed by timing error plane plots and computer simulation.

  • PDF

0.11-2.5 GHz All-digital DLL for Mobile Memory Interface with Phase Sampling Window Adaptation to Reduce Jitter Accumulation

  • Chae, Joo-Hyung;Kim, Mino;Hong, Gi-Moon;Park, Jihwan;Ko, Hyeongjun;Shin, Woo-Yeol;Chi, Hankyu;Jeong, Deog-Kyoon;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.411-424
    • /
    • 2017
  • An all-digital delay-locked loop (DLL) for a mobile memory interface, which runs at 0.11-2.5 GHz with a phase-shift capability of $180^{\circ}$, has two internal DLLs: a global DLL which uses a time-to-digital converter to assist fast locking, and shuts down after locking to save power; and a local DLL which uses a phase detector with an adaptive phase sampling window (WPD) to reduce jitter accumulation. The WPD in the local DLL adjusts the width of its sampling window adaptively to control the loop bandwidth, thus reducing jitter induced by UP/DN dithering, input clock jitter, and supply/ground noise. Implemented in a 65 nm CMOS process, the DLL operates over 0.11-2.5 GHz. It locks within 6 clock cycles at 0.11 GHz, and within 17 clock cycles at 2.5 GHz. At 2.5 GHz, the integrated jitter is $954fs_{rms}$, and the long-term jitter is $2.33ps_{rms}/23.10ps_{pp}$. The ratio of the RMS jitter at the output to that at the input is about 1.17 at 2.5 GHz, when the sampling window of the WPD is being adjusted adaptively. The DLL consumes 1.77 mW/GHz and occupies $0.075mm^2$.

Digital Fine Timing Tracker for Correlation Detection Receiver in IR-UWB Communication System (IR-UWB 시스템에서 상관 검출 수신기를 위한 디지털 미세 타이밍 추적기)

  • Ko Seok-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.905-913
    • /
    • 2006
  • In the impulse radio ultra-wideband communication systems, the residual timing offset exists when the acquisition and tracking of the timing synchronization is well done. And the offset affects the performance of the system dramatically. In order to compensate the offset, we present the digital phase-locked loop that uses the reference signal in the correlation detection receiver. First, we show the degradation of BER performance that is caused by the offset, and then compensation process of the timing tracker and performance improvement. In this paper, the timing detector in the tracker operates at the sampling period of frame level uses the correlation between received and reference signal. Also, we present the performance comparison by using the computer simulation results for different Gaussian monocycle pulses.

Analysis and design of a FSK Demodulator with Digital Phase Locked Loop (디지털 위상고정루프를 이용한 ESK복조기의 설계 및 성능 분석)

  • 김성철;송인근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.194-200
    • /
    • 2003
  • In this paper, FSK(Frequency Shift Keying) demodulator which is widely used for FH-SS system is designed and the experimental results are analyzed. The performance of the ADPLL(All-digital Phase-Locked-Loop), which is the main part of the demodulator circuit, is analyzed by the computer program. Using Maxplus-II tool provided by altera. co., ltd, each part of the ADPLL is designed and all of them is integrated into EPM7064SLC44-10 chip. And the simulation results are compared with the characteristics of the implemented circuits for analysis. There is about 2${\mu}\textrm{s}$ difference in time constant of the PLL. This difference is not critical in the demodulator. And the experimental results show that the transmitted data is well demodulated when the phase difference between the FSK modulated signal and the reference signal is about 180 degree.

A Modular UPS Design with an Active Multiple Interphase Reactor and Double PLL Control (능동 다중인터페이스 리액터와 Double PLL제어를 이용한 Modular UPS 설계)

  • 박인덕;정상식;안형회;김시경
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.489-497
    • /
    • 2001
  • The proposed dobule phase locked loop and active multiple interphase reactor are used to eliminate the circular current and the voltage ripples caused by the system parameter unbalance of parallel connected UPSs. In this paper, digital controller for the dobule PLL and active interphase reactor is implemented with ADSP21061 as an aspect of functional convenience.

  • PDF

Phase-Locked Loop Speed Control system of Converter-fed Self-Controlled PMSM (컨번터에 의한 자기제어형 영구자석 동기전동기의 PLL 속도제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Choi, Won-Beum;Lee, Yung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.332-335
    • /
    • 1990
  • A digital phase-locked loop speed control system of a self-controlled permanent magnet synchronous mortar fed by a voltage source inverter is presented. This paper discribes the hardware and software design of the system. Variable speed control system for self-controlled permanent magnet synchronous motor is proposed. Simulation results demonstrate the validity of proposed methods. This proposed control technique is implemented by using a microprocessor-based system.

  • PDF

All Digital DLL with Three Phase Tuning Stages (3단 구성의 디지털 DLL 회로)

  • Park, Chul-Woo;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.21-29
    • /
    • 2002
  • This paper describes a high resolution DLL(Delay Locked Loop) using all digital circuits. The proposed architecture is based on the three stage of coarse, fine and ultra fine phase tuning block which has a phase detector, selection block and delay line respectively. The first stage, the ultra fine phase tuning block, is tune to accomplish high resolution using a vernier delay line. The second and third stage, the coarse and fine tuning block, are tuning the phase margin of Unit Delay using the delay line and are similar to each other. It was simulated in 0.35um CMOS technology under 3.3V supply using HSPICE simulator. The simulation result shows the phase resolution can be down to lops with the operating range of 250MHz to 800MHz.

  • PDF

Design and Performance Analysis of the Digital Phase-Locked Loop For Frequency Hopping Spread Spectrum system (주파수도약 대역확산시스템을 위한 디지털 위상고정루프의 설계 및 성능분석)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1103-1108
    • /
    • 2010
  • In this paper, Frequency Synthesizer which is widely used for FH-SS system is proposed and the experimental results are analyzed. The performance of the DPLL(Digital Phase-Locked-Loop), which is the main part of the Synthesizer is analyzed by the computer program. Using Maxplus-II tool provided by altera. co., ltd, each part of the DPLL is designed and all of them is integrated into EPM7064SLC44-10 chip. And the simulation results are compared with the characteristics of the implemented circuits for analysis. And the experiential results show that the N value of the loop filter is toggled to adjacent N value, which result in phase jitter of the output. It can be resolved by increasing DCO(Digital Controlled oscillator) clock rate.

Phase Noise Analysis of 2.4 GHz PLL using SPD (SPD를 이용한 2.4 GHz PLL의 위상잡음 분석)

  • Chae, Myeoung-ho;Kim, Jee-heung;Park, Beom-jun;Lee, Kyu-song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • In this paper, phase noise analysis result for 2.4 GHz PLL(phase locked loop) using SPD(sample phase detector) is proposed. It can be used for high performance frequency synthesizer's LO(local oscillator) to extend output frequency range or for LO of offset PLL to reduce a division rate or for clock signal of DDS(direct digital synthesizer). Before manufacturing, theoretical estimation of PLL's phase noise performance should be performed. In order to calculate phase noise of PLL using SPD, Leeson model is used for modeling phase noise of VCO(voltage controlled oscillator) and OCXO(ovened crystal oscillator). After theoretically analyzing phase noise of PLL, optimized loop filter bandwidth was determined. And then, phase noise of designed loop filter was calculated to find suitable OP-Amp. Also, the calculated result of phase noise was compared with the measured one. The measured phase noise of PLL was -130 dBc/Hz @ 10 kHz.