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Analysis of a First Order Multilevel Quantized DPLL
with Phase-and Frequency-Step Input
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Abstract

A new type of digital phase-locked loop (DPLL) that employs a multilevel quantized
timing error detector (TED) is proposed and analyzed under the assumption of negligible

quantizing effect and no noise.
has a linear characteristic.

Since the timing error is quantized uniformly, the TED
From the linear characteristic of TED, a first order difference

equation describing the behavior of the loop is derived.

Using the system equation, the loop is analyzed mathematically for phase step and

frequency step input.

Desired locking condition for the loop to be locked and the lock

range for the DPLL’s to achieve exact locking independently of initial conditions are ob-

tained. And these analyses are confirmed by timing error plane plots and computer simula-

tion,

I. Introduction

Phase-locked loops have been used in various
parts of telecommunication systems because of
their wide applicability to bit synchronization
and FM- and PM- demodulation, ete.!!! Since
the late 1960’s, various types of digital phase-
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locked loops (DPLL’s) have been studied due to
the increased reliability and decreased cost of
integrated digital circuitry.!2~%)  DPLL’s of
the type employing multilevel quantized phase
detection and discrete phase adjustment also
have been studied for sinusoidal input and
rectangular input.[6'7] The behavior of those
DPLL’s is, however, much restricted and
difficult to be analyzed because of their non-
linear phase detector characteristics.

This paper deals with a comprehensive
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and complete analysis of a first order multi-
level quantized DPLL that tracks the zero
crossings of the incoming signal — assuming
negligible quantizing effect and no noise.
Unlike other DPLL’s, this loop has a unique
property in that the timing error (not phase
error) which is the time difference between
input signal and reference signal controls
the digitally controlled oscillator (DCO)
directly.
(TED) has a linear characteristic, the loop is
characterized by a linear difference equation

Since the timing error detector

in time domain.

The loop is also analyzed easily by using
timing error plane plots. In section II basic
relationships of the proposed loop are pre-
sented and the loop equation describing the
loop behavior is derived. In section IIl an-
alyses of the loop are carried out in the absence
of noise. Desired locking condition and lock
range are also explained.

II. Mathematical Model of the Loop

This loop is an all digital phase-locked loop
made up of three parts: a multilevel quantized
TED, a loop filter and a DCO. Fig. 1 shows the
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Fig. 1. System blcok diagram and the
relation between each signal,

r{t)

block diagram of the loop and the relation
between each signal. The input signal is con-
sidered to be a rectangular waveform. The
multilevel quantized TED is composed of one
Flip-Flop and some logic Gate’s. We can get
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LEAD signal by making s(t) and Q(t) AND-
gated. LAG signal is obtained by making s(t)
and Q(t) AND-gated, where §(t) is inverted
signal of s(t). Then the TED detects how
much the input signal leads or lags the reference
signals as shown in Fig. 2. The output of the
filter, i.e., the correction signal changes the
clock period of DCO in such a way to decrease
the timing error.

a(k)

e(k)

Fig. 2. Characteristic of a multilevel
quantized TED.

Let t(k) denote the time elapsed up to kth
clock period of the DCO, then it can be ex-
pressed as follows.

k
(k) = t(0) + ‘21 T\) (D
J:

where t(0) is an initial timing error and T(j)
is the time interval between t(3-1) and t(j).
Let e(k) denote the timing error between s(t)
and 1(t), it can be expressed as follows.

e(k) = t(k) - kTi 2

where Ti is the period of the input signal.
And the output of the TED is given by

200 =3 e(k) 3)

o
where TO is the nominal clock period of the
DCO and L is the number of quantizing levels
for the interval To/2. The correction signal
c(k) is given by
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To
(k) =—N- a(k) D(z) (4)

For a first order DPLL, the loop filter re-
presents just a proportional constant, ie.,
D(z) = K. Thus (4) becomes

o(k) = = K e(k) (5)

where N is the number of DCO input clock
pulses during the nominal clock period T.

The correction signal c(k) is used to con-
trol the next period of 1(t) according to the
following algorithm,

T(k) =T, - c(k-1) (6)

From (1) and (6), we have

k-1
1) = H0) + KT - = () @
From (2) and (7), the following difference
equation describing the loop behavior is
derived.

e(k+1) = (1 —;—L K) e(k)+(TO—Ti) (8)

III. Loop Analysis

1. Phase Step Response

For a phase step input, only an initial timing
error exists, i.e. Ti = TO. So the system equa-
tion (8) reduces to

e(k+1) = (1 -% K) e (k) (9)

In the steady state, if one exists, both e(k+1)
and e(k) are equal to ess the steady state
timing error. Thus, in the steady state e =
(1-25K) e,

Accordingly, ess must be zero as expected.
Ifz—gf K is equal to one, e(k+1) will be identi-
cally zero. Hence—LﬁK =—;— may be considered
to be “optimum’ in the sense that it yields
the rapidest convergence to a steady state.

Similar results have been shown in other
types of DPLL’s.[8°]

Let z-transform of e(k) be E(z) and taking
z-transform of (9), then we have

E(z) = _0)z (10)
-2k g
N
Taking inverse z-transform of (10), e(k) is
given by
e(k) = (1 -2E K)¥ o(0) (11)

Since e(k) must become zero in the steady
state, the condition for the loop to be locked
is given by 1 - % KI<1. Accordingly, the
desired locking condition is

L
0<—ﬁK<1 (12)

The behavior of the loop can be also ex-
plained graphically by drawing the timing
error plane plots corresponding to the system
equation. Fig. 3 shows the timing error plane
plots for different values of—LN—K. In Fig. 3,
(a)<{c) represent the case of locking and (d)
represents the case of divergence. In these
figures, subsequent points can be determined
along the arrows from the initial point e(0).

A computer simulated results of locking
procedure with phase step input is shown in
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Fig. 3. Timing error plane plots with
phase step input.
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Fig. 4. Locking procedure with an initial
timing error.

Fig. 4. The following parameter values are
assumed: N =100, K =1, ¢(0) = 0.2 TO. It
is shown that L = 50 makes one step locking,
while other values of L need several steps
to attain a steady state.

2. Frequency Step Response

When the input signal has a frequency
offset initially, T; is not equal to To. Under
the steady state condition, e(k+1) and e(k)
are equal to €qs . Then (8) becomes

2L
ess=(1 '-Y\TK) ess+(T0_Ti) (13)

Consequently, we have the steady state timing
error given by

T -T,
8} 1

E R o
~ K

Solving (8) for e(k) by using z-transform, we
obtain

() = (1- 30X [0 ~57p (T -T)]

N
31K To-T) (15)

+

For the loop to be stable, e(k) must converge
as k becomes large. From this, we obtain
the following condition.

| 2L

I—TK|<1
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Thus, a desired condition for the loop to be
locked with frequency step input is the same
as the one with phase step input.

In order to achieve an exact locking, in
addition to (12), the following two conditions
have to be satisfied.

i) The value of e__ must be always in the

SS

T. T,
interval (—Tl, Tl). From the above condi-

tion, we obtain the following inequality.
T
L o L
— — +—=
1-% K< <1 N K (16)

T;

ii) The value of e(k+1) must be in interval

T.
(-—, 21 ), whatever value e(k) may have.
ThlS condition is expressed as
T
L o L L 1
1-— —_ +—= —K<5
N K<Ti <IrgK ARKET
(17-a)
T
L L L
_° _L ip > 1
K< 1<2 N ,1fNK_-—2
(17-b)

Equation (17) contains all the cases of (16).
Therefore the lock range is given by

£,
L i L L L 1
=K<= = Lk«
lNK<fO<1+NK i TR
(18-a)
Lt cpaly ylgs!
N f Nt = 2
(18-b)

where f0 =,},—: free running frequency of

o
the DPLL

The lock range for different values of %K is
obtained from (18) as shown in Fig. 5. It is
shown that 'II\I;K = %makes the widest lock
range. The same result is shown in Fig. 7.

Fig. 6 shows the timing error plane plots
with frequency step input. Fig. 6(a) is for
0 <%K <—;—and represents the case of mono-
tonous locking process. Fig. 6(b) is for—II\-'I- K= é
and represents the case of one step locking.
In this case, the loop makes the widest lock
range. Fig. 6(c) is for—%—<%K < 1 and re-
presents the case of oscillatory locking process.
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Fig. 5. Lock range for different values of % k.
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Fig. 6. Timing error plane plots with frequency
step input.

The steady state timing error is determined by
the crossing point of solid line and the dotted
line in Fig. 6.

The relationship between steady state timing
error e o Iimd input frequency fi’ as the para-
meter of 7 K, is shown in Fig. 7. N =100 and

K =1 are assumed in simulation results.
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Fig. 7. The relation between e and—II:J-K.

VI. Conclusion

In this paper, a new type of DPLL using a
multilevel quantized timing error detector is
proposed ans analyzed under the assumption
of negligible quantizing effect and no noise.
Since the devised TED has a linear characteris-
tic, the loop behavior is described by a linear
difference equation,

The basic system equation is derived and
analyzed with phase- and frequency step
input. The desired locking condition and the
lock range are obtained in closed forms. And
these analyses are confirmed by computer
simulation.
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