• Title/Summary/Keyword: Digital Frequency Synthesizer

Search Result 124, Processing Time 0.022 seconds

Performance Analysis of Modulator using Direct Digital Frequency Synthesizer of Initial Clock Accumulating Method (클록 초기치 누적방식의 직접 디지털 주파수 합성기를 이용한 변조기의 성능해석)

  • 최승덕;김경태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.128-133
    • /
    • 1998
  • This paper is study on performance analysis of modulator using direct digital frequency synthesizer of Initial Clock Accumulating Method. It has been generally used for PLL or digital frequency synthesizing method to be synthesizd randomly chosen frequency state. In order to improve disadvantage of two methods, we constructed modulator system using DDFS of Initial Clock Accumulating Method. We also confirmed the coherence frequency hopping state and possibility of phase control. The results obtained from the experiments are as follows; First, the synthesized output frequency is proportional to the sampling frequency, according to index, K. Second, the difference of the gain between the basic frequency and the harmonic frequencies was more than 50 [dB], that is, this means facts that is reduced the harmonic frequency factor. Third, coherence frequency hopping state is confirmed by PN code sequence. Here, we confirmed the proposed method cut switching time, this verify facts that is the best characteristic of the frequency hopping. We also verified the fact that the phase varies as the adder is operated set or reset.

  • PDF

Frequency-stabilized Femtosecond Mode-locked Laser for Optical Frequency Metrology

  • Yoon, Tai-Hyun;Kim, Eok-Bong;Park, Seong-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.131-134
    • /
    • 2003
  • We demonstrated an optical frequency synthesizer based on a femtosecond (fs) mode-locked Ti:sapphire (Ti:s) laser by simultaneously stabilizing the carrier-offset frequency, $f_{ceo}$, and repetition rate, $f_{ rep}$, referenced to the Cs atomic frequency standard. By using two wide-band digital phase-detectors we realized a phase-coherent link between $f_{rep} and f_{ceo} with the relation f_{ceo} = f_{AOM} 5/6f_{rep} ≡ 0, where f_{AOM} = 5/6f_{rep}$ is the phase-locked driving frequency of an acousto-optic modulator (AOM) in a self-referencing interferometer and $f_{rep}$ = 100 MHz. As a result, we could stabilize all components of the fs laser comb at once with an equal frequency separation $f_{rep}$ = 100 MHz with $f_{ceo}$ = 0. In our optical frequency synthesizer, the frequency of the nth component ($f_{n}$) is given exactly by the simple relation $f_n = nf_{rep}$, enabling us to use the fs laser comb as a frequency ruler in the optical frequency metrology.

A New Method to Reduce the Size of the ROM in Direct Digital Frequency Synthesizers (직접 디지털 주파수합성기의 ROM 크기를 줄이는 새로운 방식)

  • 강형주;박인철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.267-270
    • /
    • 1999
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer (DDFS) is proposed. In the case that ROM is used for sinusoidal value calculation, reducing the size of ROM is significant. So the power consumption is affected mostly by its bit width. In the proposed method, the ROM bit width is reduced by 1 bit using the phase subtraction and the approximation. The spurious level is better than 80㏈c and the power consumption estimated is 510㎼/MHz.

  • PDF

Modified CSD Group Multiplier Design for Predetermined Coefficient Groups (그룹 곱셈 계수를 위한 Modified CSD 그룹 곱셈기 디자인)

  • Kim, Yong-Eun;Xu, Yi-Nan;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.48-53
    • /
    • 2007
  • Some digital signal processing applications, such as FFT, request multiplications with a group(or, groups) of a few predetermined coefficients. In this paper, based on the modified CSD algorithm, an efficient multiplier design method for predetermined coefficient groups is proposed. In the multiplier design for sine-cosine generator used in direct digital frequency synthesizer(DDFS), and in the multiplier design used in 128 point $radix-2^4$ FFT, it is shown that the area, power and delay time can be reduced up to 34%.

A Design of 16-QAM Modulator by use of Direct Digital Frequency Synthesizer (디지탈 직접 주파수 합성기를 이용한 16-QAM 변조기 설계)

  • 유상범;유흥균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.52-57
    • /
    • 1999
  • It is very important to design of QAM modulator of high spectral efficiency for high speed data transmission. In this paper, typical 16-QAM modulator is designed by modification design of DDFS(direct digital frequency synthesizer). DDFS generates sinusoidal waveform digitally to the frequency setting word. Phase modulation is accuratly made by control of a generated phase increment value and amplitude modulation is accomplished in the D/A converter output by control of amplitude level. For the suppression of harmonics and glitch, dual-structured DDFS is studied to improve the spurious characteristics. P-Spice is used for design and simulation in mixed mode. Also we can get the satisfactory results of designed 16-QAM modulator from the constellation output.

  • PDF

Fault Monitoring System for Cables Using a Compact Impedance Analyzer (소형 임피던스 분석기를 이용한 케이블의 결함 감시 시스템)

  • Yoon, Chai-Won;Yong, Hwan-Gu;Kim, Kwangho;Nah, Wansoo;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.872-879
    • /
    • 2017
  • This work presents a cable fault monitoring system based on the differential frequency domain reflectometry using a compact impedance analyser which is composed of a direct digital synthesizer, an op amp and a gain/phase detector with a micro controller. The proposed system can replace expensive vector network analysers for frequency domain reflectometry and therefore be deployed in sensor networks for long term multi-point cable monitoring. Effectiveness of the system is experimentally confirmed by diagnosing the status of the power cable.

A Study on Improvement of the Channel Efficiency of FH-SS Transceiver Based on DDS Technique

  • Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A novel high channel efficiency transceiver based on a fast acquisition frequency synthesizer has been designed. The direct digital synthesis (DDS) technique is applied and a simple memory look-up table is incorporated to expedite channel acquisition. The technique simplifies the frequency control process in the transceiver and thus reduces the channel switching time. As a result, the channel efficiency is improved. The designed transceiver is ideal for frequency hopping mobile communication applications.

The direct digital frequency synthesizer of QD-ROM reduction using the differential quantization (차동 양자화를 사용한 QD-ROM 압축 방식의 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Lim, So-Young;Lee, Ho-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.192-198
    • /
    • 2007
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is stored by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). To reduce the ROM size, we use the differential quantization technique with this two ROM. First, we quantize the quarter sine wave with the $2^L$ address and store the quantized value at the Q-ROM. Second, after the $2^L$ address are equally divided into $2^M$ sampling intervals, the sampling value is quantized. And the D-ROM store only the difference between this quantized value and the Q-ROM. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is affected mostly by this ROM reduction.

  • PDF

A CMOS Fractional-N Frequency Synthesizer for DTV Tuners (DTV 튜너를 위한 CMOS Fractional-N 주파수합성기)

  • Ko, Seung-O;Seo, Hee-Teak;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • The Digital TV(DTV) standard has ushered in a new era in TV broadcasting and raised a great demand for DTV tuners. There are many challenges in designing a DTV tuner, of which the most difficult part is the frequency synthesizer. This paper presents the design of a frequency synthesizer for DTV Tuners in a $0.18{\mu}m$ CMOS process. It satisfies the DTV(ATSC) frequency band(54~806MHz). A scheme is proposed to cover the full band using only one VCO. The VCO has been designed to operate at 1.6~3.6GHz band such that the LO pulling effect is minimized, and reliable broadband characteristics have been achieved by reducing the variations of VCO gain and frequency step. The simulation results show that the designed VCO has gains of 59~94MHz(${\pm}$17.7MHz/V,${\pm}$23%) and frequency steps of 26~42.5MHz(${\pm}$8.25MHz/V,${\pm}$24%), and a very wide tuning range of 76.9%. The designed frequency synthesizer has a phase noise of -106dBc/Hz at 100kHz offset, and the lock time is less than $10{\mu}$sec. It consumes 20~23mA from a 1.8V supply, and the chip size including PADs is 2.0mm${\times}$1.8mm.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.