Browse > Article
http://dx.doi.org/10.5573/IEIESPC.2015.4.4.258

Implementation of an LFM-FSK Transceiver for Automotive Radar  

Yoo, HyunGi (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology)
Park, MyoungYeol (Comotech corp. R&D center)
Kim, YoungSu (Comotech corp. R&D center)
Ahn, SangChul (Comotech corp. R&D center)
Bien, Franklin (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology)
Publication Information
IEIE Transactions on Smart Processing and Computing / v.4, no.4, 2015 , pp. 258-264 More about this Journal
Abstract
The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.
Keywords
77-GHz radar module; Front-end module (FEM); LFM-FSK; Multi-target detection; Millimeter wave transceiver; Patch array antenna; RF; Homodyne structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.T. Chen, Y.S. Chen.: 'Real-time approaching vehicle detection in blind-spot area', Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, 2009.
2 Sawant, H., Jindong Tan, Qingyan Yang, Qizhi Wang.: 'Using Bluetooth and sensor networks for intelligent transportation systems', Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE Conference on, 2004, pp.767, 772, 3-6 .
3 Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: 'Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation', Communications Magazine, IEEE , 2009, 47, (11), pp.84-95.
4 Kan Zheng, Fei Liu, Qiang Zheng, Wei Xiang, Wenbo Wang.: 'A Graph-Based Cooperative Scheduling Scheme for Vehicular Networks', Vehicular Technology, IEEE Transactions on, 2013, 62, (4), pp.1450-1458.   DOI   ScienceOn
5 Alam, N., Dempster, A.G.: 'Cooperative Positioning for Vehicular Networks: Facts and Future', Intelligent Transportation Systems, IEEE Transactions on, 2013, 14, (4), pp.1708-1717.   DOI   ScienceOn
6 Punithan, M.X., Seung-Woo Seo: 'King's Graph- Based Neighbor-Vehicle Mapping Framework', Intelligent Transportation Systems, IEEE Transactions on, 2013, 14, (3), pp.1313-1330.   DOI   ScienceOn
7 Brennan, P.V., Lok, L.B., Nicholls, K., Corr, H.: 'Phase-sensitive FMCW radar system for highprecision Antarctic ice shelf profile monitoring', Radar, Sonar & Navigation, IET, 2014, 8, (7), pp. 776-786.   DOI   ScienceOn
8 M.-S. Lee, Y.-H. Kim: 'New data association method for automotive radar tracking', IEE Proceedings - Radar, Sonar and Navigation, 2001, 148, (5), pp. 297-301.   DOI   ScienceOn
9 A. Polychronopoulos, A. Amditis, N. Floudas, H. Lind: 'Integrated object and road border tracking using 77 GHz automotive radars', IEE Proceedings - Radar, Sonar and Navigation, 2004, 151, (6), pp. 375-381.   DOI   ScienceOn
10 Marc-Michael Meinecke, Hermann Rohling: 'Combination of LFMCW and FSK Modulation Principles for Automotive Radar Systems', German Radar Symposium GRS2000, 2000.
11 Hermann Rohling, Christof Moller: 'Radar waveform for automotive radar systems and applications', Radar Conference 2008 '08 IEEE, 2008, pp.1-4.
12 Bi Xin, Du Jinsong: 'A New Waveform for Range-Velocity Decoupling in Automotive Radar', 2010 2nd International Conference on Signal Processing Systems (ICSPS), 2010.
13 M. Musa, S. Salous: 'Ambiguity elimination in HF FMCW radar systems', IEE Proceedings - Radar, Sonar and Navigation, 2012, 147, (4), pp. 182-188.
14 Eugin Hyun, Woojin Oh, Jong-Hun Lee: 'Multitarget detection algorithm for FMCW radar ', Radar Conference (RADAR), 2012 IEEE, 2012, pp. 338-341.