• Title/Summary/Keyword: Dedekind domains

Search Result 22, Processing Time 0.022 seconds

ON OVERRINGS OF GORENSTEIN DEDEKIND DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu;Zhao, Songquan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.991-1008
    • /
    • 2013
  • In this paper, we mainly discuss Gorenstein Dedekind do-mains (G-Dedekind domains for short) and their overrings. Let R be a one-dimensional Noetherian domain with quotient field K and integral closure T. Then it is proved that R is a G-Dedekind domain if and only if for any prime ideal P of R which contains ($R\;:_K\;T$), P is Gorenstein projective. We also give not only an example to show that G-Dedekind domains are not necessarily Noetherian Warfield domains, but also a definition for a special kind of domain: a 2-DVR. As an application, we prove that a Noetherian domain R is a Warfield domain if and only if for any maximal ideal M of R, $R_M$ is a 2-DVR.

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan;Oh, Dong Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1969-1980
    • /
    • 2017
  • Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

A Characterization of Dedekind Domains and ZPI-rings

  • Rostami, Esmaeil
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.433-439
    • /
    • 2017
  • It is well known that an integral domain D is a Dedekind domain if and only if D is a Noetherian almost Dedekind domain. In this paper, we show that an integral domain D is a Dedekind domain if and only if D is an almost Dedekind domain such that Max(D) is a Noetherian topological space as a subspace of Spec(D) with respect to the Zariski topology. We also give a new characterization of ZPI-rings.

MULTIPLICATION MODULES OVER PULLBACK RINGS (I)

  • ATANI, SHAHABADDIN EBRAHIMI;LEE, SANG CHEOL
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.69-81
    • /
    • 2006
  • First, we give a complete description of the multiplication modules over local Dedekind domains. Second, if R is the pullback ring of two local Dedekind domains over a common factor field then we give a complete description of separated multiplication modules over R.

  • PDF

ON 𝜙-SHARP RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.237-246
    • /
    • 2016
  • The purpose of this paper is to introduce some new class of rings that are closely related to the classes of sharp domains, pseudo-Dededkind domains, TV domains and finite character domains. A ring R is called a ${\phi}$-sharp ring if whenever for nonnil ideals I, A, B of R with $I{\supseteq}AB$, then I = A'B' for nonnil ideals A', B' of R where $A^{\prime}{\supseteq}A$ and $B^{\prime}{\supseteq}B$. We proof that a ${\phi}$-Dedekind ring is a ${\phi}$-sharp ring and we get some properties that by them a ${\phi}$-sharp ring is a ${\phi}$-Dedekind ring.

SPLITTING MULTIPLICATIVE SETS IN DEDEKIND DOMAINS

  • Anderson, David-F.;Park, Jeanam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.389-398
    • /
    • 2001
  • Let D be a Dedekind domain with divisor class group Cl(D). We show that there is a correspondence between the set of splitting multiplicative subsets in D and certain subgroups of Cl(D).

  • PDF

SOME CHARACTERIZATIONS OF DEDEKIND MODULES

  • Kwon, Tae In;Kim, Hwankoo;Kim, Myeong Og
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • In this article, we generalize the concepts of several classes of domains (which are related to a Dedekind domain) to a torsion-free module and it is shown that for a faithful multiplication module over an integral domain, we characterize Dedekind modules, cyclic submodule modules, and discrete valuation modules in terms of factorable modules and a sort of Euclidean algorithm.

INTEGRAL DOMAINS WITH A FREE SEMIGROUP OF *-INVERTIBLE INTEGRAL *-IDEALS

  • Chang, Gyu-Whan;Kim, Hwan-Koo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1207-1218
    • /
    • 2011
  • Let * be a star-operation on an integral domain R, and let $\mathfrak{I}_*^+(R)$ be the semigroup of *-invertible integral *-ideals of R. In this article, we introduce the concept of a *-coatom, and we then characterize when $\mathfrak{I}_*^+(R)$ is a free semigroup with a set of free generators consisting of *-coatoms. In particular, we show that $\mathfrak{I}_*^+(R)$ is a free semigroup if and only if R is a Krull domain and each ${\upsilon}$-invertible ${\upsilon}$-ideal is *-invertible. As a corollary, we obtain some characterizations of *-Dedekind domains.