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Abstract. It is well known that an integral domain D is a Dedekind domain if and only

if D is a Noetherian almost Dedekind domain. In this paper, we show that an integral

domain D is a Dedekind domain if and only if D is an almost Dedekind domain such that

Max(D) is a Noetherian topological space as a subspace of Spec(D) with respect to the

Zariski topology. We also give a new characterization of ZPI-rings.

1. Introduction

Let R denote throughout a commutative ring with 1. Recall that a ring R is
called a ZPI-ring if every proper ideal of R is a product of prime ideals. Also,
an integral domain D is called a Dedekind domain if every proper ideal of D is a
product of prime ideals. It is well known that if D is a Dedekind domain, then Dm

is a Noetherian valuation domain for each maximal ideal m of D and the converse
is true if D is Noetherian. An integral domain D is called almost Dedekind if Dm is
a Noetherian valuation domain for each maximal ideal m of D. Thus, a Dedekind
domain is an almost Dedekind domain and a Noetherian almost Dedekind domain is
a Dedekind domain. In [6], Loper discussed methods for constructing nonNoetherian
almost Dedekind domains.

Almost Dedekind domains and ZPI-rings have many of the important properties
of Dedekind domains that make them two useful and attractive classes of rings. We
give below some results which demonstrates some of the properties of Dedekind
domains, almost Dedekind domains and ZPI-rings.

Theorem 1.1.([5, Theorem 6.20]) If D is a Noetherian integral domain, then the
following statements are equivalent:

(1) D is a Dedekind domain.

(2) D is integrally closed and every nonzero proper prime ideal of D is maximal.
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(3) Every nonzero ideal of D generated by two elements is invertible.

(4) If AB = AC, where A, B, C are ideals of D and A 6= 0, then B = C.

(5) For every maximal ideal m of D, the ring of quotients Dm is a valuation ring.

Theorem 1.2.([5, Theorem 9.4]) If D is an integral domain which is not a field,
then the following statements are equivalent:

(1) D is an almost Dedekind domain.

(2) D has Krull dimension one and each primary ideal of D is a power of its
radical.

Theorem 1.3.([5, Theorem 9.10]) The following statements are equivalent for a
ring R.

(1) R is a ZPI-ring.

(2) R is a Noetherian ring such that for each maximal ideal m of R, there are no
ideals of R strictly between m and m2.

(3) R is a direct sum of a finite number of Dedekind domains and special primary
rings.

For more information about Dedekind domains, almost Dedekind domains and
ZPI-rings, refer to [4] and [5].

In this paper by using Max(D) as a subspace of Spec(D) with respect to the
Zariski topology, we show that an integral domain D is a Dedekind domain if
and only if D is an almost Dedekind domain such that Max(D) is a Noetherian
topological space. We also give a new characterization of ZPI-rings.

2. Main Results

Recall that a ring R is said to be indecomposable, if R cannot be written as
R = R1 × R2, where R1 and R2 are both nonzero rings. It is well known, and
not difficult to prove, that a ring R is indecomposable if and only if 1 is the only
nonzero idempotent of R.

Lemma 2.1. The following statements are equivalent for an ideal I in R.

(1) The ideal I can be written as I = J1 ∩ J2 ∩ ... ∩ Jn, where J1, J2,...,Jn are
ideals in R such that each of the R/Ji is indecomposable.

(2) The ideal I can be written as I = K1K2...Km = K1∩K2∩ ...∩Km, where K1,
K2,...,Km are pairwise comaximal ideals in R such that each of the R/Ki is
indecomposable.

(3) R/I has only finitely many idempotents.
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Proof. (1)⇒ (2) Let I can be written as I = J1∩J2∩ ...∩Jn, where J1, J2,...,Jn are
ideals in R such that each of the R/Ji is indecomposable. Let two of the Ji’s , say J1

and J2, are contained in a maximal ideal m of R. If e+(J1∩J2) is an idempotent in
R/(J1∩J2), then e+J1 and e+J2 are idempotents in R/J1 and R/J2, respectively.
Now since R/J1 and R/J2 are indecomposable and J1 ⊆ m and J2 ⊆ m, we have
e + (J1 ∩ J2) = 0 + (J1 ∩ J2) or e + (J1 ∩ J2) = 1 + (J1 ∩ J2). Hence, R/(J1 ∩ J2)
is also indecomposable. Set I ′1 = (J1 ∩ J2). Hence, I = I ′1 ∩ I3 ∩ ... ∩ Jn such that
R/I ′1, R/J3, ..., R/Jn are indecomposable. Repeating this argument, we see that the
ideal I can be written as I = K1 ∩K2 ∩ ...∩Km, where K1, K2,...,Km are pairwise
comaximal ideals of R such that each of the R/Ki is indecomposable. Now since
K1,K2,...,Km are pairwise comaximal, we have K1K2...Km = K1 ∩K2 ∩ ... ∩Km.
(2)⇒ (3) Let the ideal I can be written as I = K1K2...Km = K1 ∩K2 ∩ ... ∩Km,
where K1, K2,...,Km are pairwise comaximal ideals of R such that each of the R/Ki

is indecomposable. By the Chinese Remainder Theorem, R/I ∼=
⊕m

i=1R/Ki. Now
since each of the R/Ki has no nontrivial idempotents, R/I has only finitely many
idempotents.
(3) ⇒ (1) If R/I is indecomposable, there is nothing to prove. Suppose that R/I
is not indecomposable. Then there exists a nontrivial idempotent r + I in R/I.
Thus, {0 + I} = I/I = (〈I, r〉/I) ∩ (〈I, r − 1〉/I) = (〈I, r〉/I)(〈I, r − 1〉/I). Hence,
I = 〈I, r〉 ∩ 〈I, r − 1〉 and R/I ∼= R/〈I, r〉 ⊕ R/〈I, r − 1〉. Now if R/〈I, r〉 and
R/〈I, r − 1〉 are indecomposable, the proof is complete. Otherwise, R/〈I, r〉 or
R/〈I, r−1〉 can be written as a direct sum of nonzero rings as above. Since R/I has
finitely many idempotents, this process terminates after finite steps. This completes
the proof. 2

For a ring R, let Spec(R) and Max(R) denote the set of all prime ideals and all
maximal ideals of R, respectively. The Zariski topology on Spec(R) is the topology
obtained by taking the collection of sets of the form D(I) = {P ∈ Spec(R) | I 6⊆ P}
(resp. V(I) = {P ∈ Spec(R) | I ⊆ P}), for every ideal I of R, as the open
(resp. closed) sets. When considering as a subspace of Spec(R), Max(R) is called
Max−Spectrum of R. So, its closed and open subsets are D(I) = D(I)∩Max(R) =
{m ∈ Max(R) | I 6⊆ m} and V(I) = V(I) ∩Max(R) = {m ∈ Max(R) | I ⊆ m},
respectively.

A topological space X is called Noetherian if every nonempty set of closed
subsets of X, ordered by inclusion, has a minimal element. An ideal I of R is called
a J-radical ideal if it is an intersection of maximal ideals. Clearly, J-radical ideals of
R correspond to closed subsets of Max(R), and Max-Spectrum of R is Noetherian
if and only if R satisfies the ascending chain condition for J-radical ideals (See [7]
for more details).

Theorem 2.2. Let R be a ring such that Max(R) is a Noetherian topological space
as a subspace of Spec(R) with respect to the Zariski topology. Then every proper
ideal I of R can be written as I = J1 ∩ J2 ∩ ... ∩ Jn, where J1, J2,...,Jn are ideals
of R such that each of the R/Ji is indecomposable.

Proof. Let I be a proper ideal of R. Since Max(R) is Noetherian, Max(R/I) is also
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Noetherian. Thus, it is sufficient to show that the result is true for the zero ideal.
Suppose, on the contrary, that the zero ideal cannot be written as I = J1∩J2∩...∩Jn,
where J1, J2,...,Jn are ideals of R such that each of the R/Ji is indecomposable. By
Lemma 2.1, R has infinitely many distinct idempotents, say α1, α2,...,αn,..., and so
f1 = α1, f2 = α1α2,..., fn = α1α2...αn,..., are infinitely many distinct idempotents
in R with fifi+1 = fi+1. Set ei = fi − fi+1 for each i ∈ N. It is easily seen that
{ei}∞i=1 is an infinite set of nonzero orthogonal idempotents. For each i ∈ N, as
1− ei 6= 1, there exists mi ∈ Max(R) such that 1− ei ∈ mi.

Set Jn = ∩i∈N\{1,2,...,n}mi for each n ∈ N. Thus J1 ⊆ J2 ⊆ J3 ⊆ ..., is an
ascending chain of J-radical ideals of R. By hypothesis, there exists k ∈ N such that
Jk = Jk+1. Therefore, Jk+1 = ∩i∈N\{1,2,...,k+1}mi ⊆ Jk = ∩i∈N\{1,2,...,k}mi ⊆ mk+1.
Now for all i 6= k + 1, ek+1 = ek+1 − 0 = (1 − ei)ek+1 ∈ mi. Thus, ek+1 ∈ Jk+1 ⊆
mk+1. Therefore, ek+1 ∈ mk+1 and 1− ek+1 ∈ mk+1, a contradiction. 2

We will need the following well known fact about indecomposable rings which
is a consequence of [1, Proposition 27.1].

Lemma 2.3. Let I be a proper ideal of R. Then R/I is indecomposable if and only
if R/

√
I is indecomposable.

An ideal I of a ring R is called semi-primary if
√
I is a prime ideal. In [3] and [2],

Gilmer considered rings whose semi-primary ideals are primary. Before proceeding,
we state some useful results.

Theorem 2.4.([2, Theorem 2]) Let R be a ring whose semi-primary ideals are
primary. If Q is a P -primary ideal of R where P is a nonmaximal prime ideal of
R, then Q = P .

By Lemma 2.3, if I is a semi-primary ideal, then R/I is indecomposable. The
next result is a consequence of Theorem 2.4.

Corollary 2.5. Let R be a ring with the property that if R/I is indecomposable for
an ideal I of R, then I is primary. Then if Q is a P -primary ideal of R where P
is a nonmaximal prime ideal of R, then Q = P .

Lemma 2.6. Let R be a one-dimensional ring such that for any chain P ⊂ m of
prime ideals of R and p ∈ P , there exists m ∈ m such that p = pm. Then if P is a
nonmaximal prime ideal of R and I is an ideal of R with

√
I = P , then I = P .

Proof. Let P be a nonmaximal prime ideal of R, and let I be an ideal of R with√
I = P . Consider the ring R = R/I, and write “bar” for the quotient map. Since√
I = P , P is the unique nonmaximal prime ideal of R. Let p ∈ P . If m is a

maximal ideal of R, then P ⊂ m. By hypothesis, there exists m ∈ m such that
p = pm. Now let x be an element of R such that x 6∈ m. Then (x − xm)p = 0.
Since x− xm 6∈ m, the annihilator of p must be R. Hence, p = pm = 0. Therefore,
I = P . 2

Corollary 2.7.([3, Corollay 2.2]) Let R be a ring whose semi-primary ideals are
primary. Then R has dimension less than two.
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Remark 2.8. It is easily seen that if an ideal I of a ring R can be generated by a
set of idempotents, then every element of I is a multiple of an idempotent of I.

Lemma 2.9. Let I be a ideal of R such that R/I is indecomposable, and let
I ′ = 〈{e ∈ I | e2 = e}〉. Then R/I ′ is also indecomposable.

Proof.Let x2+I ′ = x+I ′ for some x ∈ R. Thus, x2−x ∈ I ′ ⊆ I and so x2+I = x+I.
Since R/I is indecomposable and x + I is an idempotent element in R/I, we have
x ∈ I or x−1 ∈ I. Suppose that x ∈ I. Now since x2−x ∈ I ′, by Remark 2.8, there
exists e2 = e ∈ I ′ such that x2 − x = re for some r ∈ R. Thus, x2 − x = (x2 − x)e.
Hence, (1− e)x2 = (1− e)x. Thus, ((1− e)x)2 = (1− e)2x2 = (1− e)x2 = (1− e)x.
This shows that (1− e)x is an idempotent element in I, hence (1− e)x ∈ I ′. Now
since e ∈ I ′, we have x ∈ I ′. A similar argument works when x− 1 ∈ I. Therefore,
R/I ′ has no nontrivial idempotents, and so R/I ′ is indecomposable. 2

Lemma 2.10. Let R be a zero-dimensional ring. If {Pα}α∈Λ is a family of prime
ideals of R such that R/ ∩α∈Λ Pα is indecomposable, then | Λ |= 1.

Proof. Let {Pα}α∈Λ be a family of prime ideals of R such that R/ ∩α∈Λ Pα is
indecomposable. Since ∩α∈ΛPα is a radical ideal, R/∩α∈Λ Pα is a zero-dimensional
reduced ring, and so R/ ∩α∈Λ Pα is a V on Neumann regular ring. Suppose r +
∩α∈ΛPα is a nonzero element of R/ ∩α∈Λ Pα, if r + ∩α∈ΛPα is nonunit, then there
exists s+∩α∈ΛPα in R/∩α∈ΛPα such that r+∩α∈ΛPα = rsr+∩α∈ΛPα. It is easily
seen that sr+∩α∈ΛPα is a nontrivial idempotent of R/∩α∈Λ Pα. So R/∩α∈Λ Pα is
not indecomposable, a contradiction. Thus, every nonzero element of R/ ∩α∈Λ Pα
is unit, and so R/ ∩α∈Λ Pα is a field. Thus, | Λ |= 1. 2

Proposition 2.11. The following statements are equivalent for a ring R.

1. For an ideal I of R if R/I is indecomposable, then I is primary.

2. R is a zero-dimensional ring or R is a one-dimensional ring such that every
nonmaximal prime ideal of R can be generated by its idempotents.

Proof. (1)⇒ (2) By Corollary 2.7 and the fact that R/I is indecomposable for every
semi-primary ideal I, R has dimension less than two. Let R be a one-dimensional
ring, and let P be a nonmaximal prime ideal of R. By Lemma 2.9, R/P ′ is indecom-
posable, where P ′ = 〈{e ∈ P | e2 = e}〉. By hypothesis, P ′ is primary. Since P is a
minimal prime ideal over P ′, P ′ is P -primary ideal. Thus P ′ = P by Corollary 2.5.
Therefore, every nonmaximal prime ideal of R can be generated by its idempotents.
(2)⇒ (1) Let R be a zero-dimensional ring, and let R/I be indecomposable for an
ideal I of R. By Lemma 2.3, R/

√
I = R/∩I⊆P∈Spec(R) P is indecomposable. Thus,

by Lemma 2.10,
√
I = ∩I⊆P∈Spec(R)P must be a maximal ideal of R. Hence, I is

primary in this case.
Now let R be one-dimensional, and let R/I be indecomposable for an ideal

I of R. By Lemma 2.3, R/
√
I = R/ ∩I⊆P∈Spec(R) P is indecomposable. If

R/ ∩I⊆P∈Spec(R) P is a zero-dimension ring, as above,
√
I = ∩I⊆P∈Spec(R)P is

a maximal ideal of R, and so I is primary.
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Now let R/∩I⊆P∈Spec(R)P be a one-dimension ring. We now consider the cases
∩I⊆P∈Spec(R)P is a prime ideal and ∩I⊆P∈Spec(R)P is not a prime ideal.
Case 1. If ∩I⊆P∈Spec(R)P is a prime ideal of R, then ∩I⊆P∈Spec(R)P is a nonmaxi-
mal prime ideal of R. If p ∈ ∩I⊆P∈Spec(R)P , by hypothesis and Remark 2.8, there
exists an idempotent e ∈ ∩I⊆P∈Spec(R)P such that p = re for some r ∈ R. Hence,

p = pen for each n ∈ N. Since
√
I = ∩I⊆P∈Spec(R)P , thus a power of e is in I.

Hence, p ∈ I, and so ∩I⊆P∈Spec(R)P = I. Therefore, I is primary.
Case 2. If ∩I⊆P∈Spec(R)P is not a prime ideal, there exists a nonmaximal prime
ideal P1 of a ring R containing ∩I⊆P∈Spec(R)P . By hypothesis, there exists a non-
trivial idempotent e ∈ P1 \ ∩I⊆P∈Spec(R)P . Thus the ring R/∩I⊆P∈Spec(R) P has a
nontrivial idempotent, and so R/ ∩I⊆P∈Spec(R) P is not indecomposable, a contra-
diction. 2

Now we can state the main results of this paper.

Theorem 2.12. The following statements are equivalent for a ring R.

(1) R is a ZPI-ring.

(2) R satisfies the following conditions:

(a) The dimension of R is at most one and every nonmaximal prime ideal
of R can be generated by its idempotents.

(b) Each primary ideal of R is a power of its radical.

(c) Max(R) is a Noetherian topological space as a subspace of Spec(R) with
respect to the Zariski topology.

Proof. By Theorem 1.3 and the definition of ZPI-rings, it is sufficient to prove
(2) ⇒ (1). By Theorem 2.2 and Lemma 2.1, every proper ideal I of R can be
written as I = K1K2...Km = K1 ∩K2 ∩ ...∩Km, where K1, K2,...,Km are pairwise
comaximal ideals in R such that each of the R/Ki is indecomposable. Proposition
2.11 implies that each of the Ki is primary, and so every proper ideal of R can be
written as a product of primary ideals. By hypothesis, each primary ideal of R is
a power of its radical. Thus, every ideal of R can be written as a product of prime
ideals of R. Therefore, R is a ZPI-ring. 2

Theorem 2.13. Let D be an integral domain which is not a field, then the following
statements are equivalent:

(1) D is a Dedekind domain.

(2) D is an almost Dedekind domain such that Max(D) is a Noetherian topological
space as a subspace of Spec(D) with respect to the Zariski topology.

Proof. By Theorem 1.1 and 1.2, it is sufficient to prove (2) ⇒ (1). Suppose that
D is an almost Dedekind domain such that Max(D) is a Noetherian topological
space as a subspace of Spec(D) with respect to the Zariski topology. Thus, by
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Theorem 2.2, every proper ideal I of D can be written as I = J1 ∩ J2 ∩ ... ∩ Jn,
where J1, J2,...,Jn are ideals of D such that each of the D/Ji is indecomposable.
By Proposition 2.11, each of the Ji is primary, and so every proper ideal of D can
be written as an intersection of primary ideals. Since D is an almost Dedekind
domain, each nonzero primary ideal of D is a power of its radical. Thus, every
nonzero proper ideal I of D can be written as I = J1 ∩ J2 ∩ ... ∩ Jn, such that
each of the Ji is a power of a maximal ideal, say Ji = mrii for some ri ∈ N. Hence,
I = J1 ∩ J2 ∩ ... ∩ Jn = mr11 ∩ mr22 ∩ ... ∩ mrnn = mr11 mr22 ...m

rn
n . Therefore, D is a

Dedekind domain. 2

Theorem 2.14. Let D be an integral domain which is not a field, then the following
statements are equivalent:

(1) D is an almost Dedekind domain and each nonzero element of D is contained
in only finitely many maximal ideals of D.

(2) D is an almost Dedekind domain such that Max(D) is a Noetherian topological
space as a subspace of Spec(D) with respect to the Zariski topology.

Proof. By Theorem 2.13 and [4, Theorem 37.2]. 2
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