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INTEGRAL DOMAINS WITH A FREE SEMIGROUP OF

∗-INVERTIBLE INTEGRAL ∗-IDEALS

Gyu Whan Chang† and Hwankoo Kim‡

Abstract. Let ∗ be a star-operation on an integral domain R, and let
I +

∗ (R) be the semigroup of ∗-invertible integral ∗-ideals of R. In this
article, we introduce the concept of a ∗-coatom, and we then characterize

when I +
∗ (R) is a free semigroup with a set of free generators consisting of

∗-coatoms. In particular, we show that I +
∗ (R) is a free semigroup if and

only if R is a Krull domain and each v-invertible v-ideal is ∗-invertible.
As a corollary, we obtain some characterizations of ∗-Dedekind domains.

1. Introduction

Let R be an integral domain, and let ∗ be a star-operation (defined later)
on R. Let F∗(R) (resp., I∗(R), P(R)) be the set of nonzero fractional ∗-
ideals (resp., ∗-invertible ∗-ideals, principal ideals) of R. Then F∗(R) forms
a commutative monoid under ∗-multiplication, that is, for any A,B ∈ F∗(R),
A ∗ B := (AB)∗. Moreover I∗(R) is a subgroup of F∗(R) and P(R) is a
subgroup of I∗(R). Let F+

∗ (R) (resp., I +
∗ (R), P+(R)) be the positive cone

of F∗(R) (resp., I∗(R), P(R)) which consists of the nonzero integral ∗-ideals
(resp., ∗-invertible ∗-ideals, principal ideals) of R. The structure of an integral
domain R depends heavily on the properties of F∗(R), F+

∗ (R), P(R), or
P+(R). For instance, it is well-known that R is a Dedekind domain if and only
if F+

d (R) is a free semigroup with base Spec(R)\{0}. In [6], it was determined
when Fd(R) is finitely generated as a monoid. Recently in [4], it was further
investigated and extended to a commutative ring with zero divisors. In [8],
among other things, it was shown that R is a Krull domain if and only if F+

t (R)
is a free semigroup with a set of free generators consisting of t-nonfactorable
ideals. Later the concept of ∗-nonfactorability of ideals was further studied in
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[10, 18, 19]. In particular, it was shown in [10, Theorem 3.2] that if F+
∗ (R)

is a free semigroup with a set of free generators consisting of ∗-nonfactorable
ideals, then R is a Krull domain. Finally, in [20], it was characterized when
I +

d (R) is a free semigroup with a system of generators consisting of coatoms.
In this article, we define the notion of ∗-coatoms for any star-operation ∗

and we then characterize when I +
∗ (R) is a free semigroup with a set of free

generators consisting of ∗-coatoms. More precisely, we show that I∗(R) is a
free semigroup if and only if R is a Krull domain and Iv(R) = I∗(R) if and
only if every nonzero principal ideal of R can be expressed as a finite ∗-product
of height-one prime ideals. In particular, if ∗ is of finite character, then I∗(R)
is a free semigroup if and only if each nonzero ∗-locally principal ideal of R is
∗-invertible and RM is a factorial domain for all ∗-maximal ideals M of R. As
a byproduct, we obtain some characterizations of ∗-Dedekind domains.

Let R be an integral domain with quotient field K. Let F (R) be the set
of nonzero fractional ideals of R. A mapping A 7→ A∗ of F (R) into F (R)
is called a star-operation on R if the following conditions are satisfied for all
a ∈ K \ {0} and A,B ∈ F (R):

(i) (aR)∗ = aR, (aA)∗ = aA∗;
(ii) A ⊆ A∗, if A ⊆ B, then A∗ ⊆ B∗;
(iii) (A∗)∗ = A∗.

It is easy to show that for all A,B ∈ F (R), (AB)∗ = (AB∗)∗ = (A∗B∗)∗. An
A ∈ F (R) is called a ∗-ideal if A = A∗. A ∗-ideal is called a ∗-maximal ideal if
it is maximal among proper integral ∗-ideals. We denote by ∗-Max(R) (resp.,
∗-Spec(R)) the set of all ∗-maximal ideals (resp., prime ∗-ideals) of R.

Given any star-operation ∗ on R, we can construct another star-operation
∗f defined by A∗f

:=
∪
{J∗ | J is a nonzero finitely generated subideal of A}

for A ∈ F (R). Clearly, if A ∈ F (R) is finitely generated, then A∗ = A∗f
. We

say that ∗ is of finite character if ∗ = ∗f and that ∗f is the finite character
star-operation induced by ∗. It is well-known that if ∗ = ∗f , then ∗-Max(R) ̸= ∅
when R is not a field; a ∗-maximal ideal is a prime ideal; each proper integral ∗-
ideal is contained in a ∗-maximal ideal; each prime ideal minimal over a ∗-ideal
is a prime ∗-ideal (in particular, each height-one prime ideal is a prime ∗-ideal);
and R =

∩
P∈∗−Max(R) RP . Let ∗ be any star-operation on R. An A ∈ F (R) is

said to be ∗-invertible if (AA−1)∗ = R, where A−1 = {x ∈ K|xA ⊆ R}. We say
that A ∈ F (R) is of ∗-finite type if A∗ = B∗ for some finitely generated ideal
B of R. Also, A ∈ F (R) is said to be ∗-locally principal if ARP is principal
for all ∗-maximal ideals P of R. It is well-known that A is ∗f -invertible if and
only if A is of ∗f -finite type and A is ∗f -locally principal.

The most important examples of star-operations are (1) the d-operation
defined by Ad := A, (2) the v-operation defined by Av := (A−1)−1, (3) the
t-operation defined by t := vf , and (4) the w-operation defined by Aw :=
{x ∈ K | Jx ⊆ A for some finitely generated ideal J with J−1 = R} for
A ∈ F (R). Note that all star-operations above except for v are of finite
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character. For any star-operation ∗ on R and for any A ∈ F (R), we have that
A ⊆ A∗ ⊆ Av (i.e., d ≤ ∗ ≤ v) and A ⊆ A∗f

⊆ At; so (A∗)v = Av = (Av)∗
and (A∗f

)t = At = (At)∗f
. In particular, a v-ideal (resp., t-ideal) is a ∗-ideal

(resp., ∗f -ideal). General references for any undefined terminology or notation
are [15, 16].

2. When I +
∗ (R) is a free semigroup

Throughout this section, R denotes an integral domain with quotient field
K, ∗ is a star-operation on R, ∗f is the finite character star-operation on R
induced by ∗, and I +

∗ (R) is the semigroup of ∗-invertible integral ∗-ideals of
R. In this section, we study when I +

∗ (R) is a free semigroup.
As mentioned in the introduction, in [8], the authors introduced the con-

cepts of ∗-nonfactorable ideals and (unique) ∗-factorable domains, and they
then characterized several integral domains including Krull domains using these
concepts. We say that an ideal N of R is ∗-nonfactorable if it is a proper ∗-
ideal and N = (AB)∗, where A and B are ideals of R, implies either A∗ = R
or B∗ = R. We also say that an integral domain R is a ∗-factorable domain
(resp., unique ∗-factorable domain) if every proper ∗-ideal of R can be factored
(resp., factored uniquely) into a ∗-product of ∗-nonfactorable ideals.

Definition. An ideal A of I +
∗ (R) is called a ∗-coatom of I +

∗ (R) if A is not
expressible as a nontrivial ∗-product of ∗-invertible ideals of R.

We remark that the ∗-coatoms of I +
∗ (R) coincide with the maximal elements

of I +
∗ (R) (with respect to set inclusion). By definition a ∗-coatom is a ∗-

invertible ∗-ideal. Hence it is precisely a ∗-nonfactorable ∗-invertible ∗-ideal.
We next recall some results from [21, Theorem 1.1] on ∗-invertible ideals, which
are very useful in the subsequent arguments.

Lemma 2.1. If I is a nonzero fractional ideal of R, then

(1) I∗f
⊆ It;

(2) If I is ∗-invertible, then I is v-invertible and I∗ = Iv;
(3) If I is ∗f -invertible, then I is t-invertible and I∗ = I∗f

= It = Iv.

Lemma 2.2. If R satisfies ACC on ∗-invertible ∗-ideals, then every ∗-invertible
∗-ideal is expressible as a (finite) ∗-product of ∗-coatoms.

Proof. This follows from the following easy observation: Let I ⊆ J be ∗-ideals
ofR with J , ∗-invertible. Then there exists a ∗-idealA such that I = (JA)∗. □

The proof of the following lemma is essentially the same as that of [8, Lemma
11]. However for the sake of completeness we include its proof.

Lemma 2.3. Suppose that I +
∗ (R) is a free semigroup with a set of free gen-

erators consisting of ∗-coatoms, and let N be a proper ∗-invertible ∗-ideal of
R. Then N is a ∗-coatom if and only if N is prime (if and only if N is
∗-nonfactorable).
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Proof. Let N be a ∗-coatom. Let ab ∈ N for nonzero nonunits a, b ∈ R with
a ̸∈ N . Then aR = (P1 · · ·Pr)∗, where each Pi is a ∗-coatom. Note that
each Pi ̸= N since a ̸∈ N . Also, bR = (Q1 · · ·Qs)∗, where each Qj is a
∗-coatom. Note that abN−1 is a proper ∗-invertible ∗-ideal (if abN−1 = R,
then N = ((abN−1)N)∗ = abR = (aR)(bR) is not a ∗-coatom); so we may
write abN−1 = (M1 · · ·Mu)∗, where each Mk is a ∗-coatom. Thus abR =
(NM1 · · ·Mu)∗ = (P1 · · ·PrQ1 · · ·Qs)∗. Since I +

∗ (R) is a free semigroup with
a set of free generators consisting of ∗-coatoms, we have that N = Qj for some
j. Thus b ∈ bR = (Q1 · · ·Qs)∗ ⊆ N , and hence N is prime. Conversely, it was
already observed in [8] that a ∗-invertible prime ∗-ideal is ∗-nonfactorable, and
hence a ∗-coatom. □

Lemma 2.4. If every nonzero proper principal ideal of R decomposes into a
∗-product of prime ∗-ideals, then the set of the height-one primes equals the set
of the ∗-invertible prime ∗-ideals.

Proof. Let P be a ∗-invertible prime ∗-ideal of R and assume that the height
of P is greater than 1. Then there exists a nonzero prime ideal Q ⊊ P . For
0 ̸= q ∈ Q, we have Q ⊇ qR = (P1 · · ·Ps)∗, where the Pi are prime ∗-ideals.
It then follows that P ⊋ Q ⊇ Pi for some i (1 ≤ i ≤ s). Thus Pi = (PZ)∗
for some ∗-invertible ∗-ideal Z ̸= R. This implies Z ⊆ Pi. So if we replace Z
by Pi in the equality Pi = (PZ)∗ and apply the ∗-invertibility of Pi, we get a
contradiction. For the reverse inclusion, let P be a height-one prime ideal of
R. Then P is minimal over a nonzero principal ideal aR = (P1 · · ·Pn)∗, where
the Pi are prime ∗-ideals. Thus P = Pi for some i, and so P is a ∗-invertible
prime ∗-ideal. □

Let X1(R) be the set of height-one prime ideals of R. An integral domain
R is a Krull domain if (i) RP is a rank-one DVR for each P ∈ X1(R), (ii)
R =

∩
P∈X1(R) RP , and (iii) each nonzero element of R is contained in finitely

many height-one prime ideals of R. It is well known that R is a Krull domain
if and only if each nonzero proper principal ideal of R is a t-product of (t-
invertible) prime ideals [17, Theorem 3.9].

We say that R is a ∗-Schreier domain if I∗(R) is a Riesz group. More
precisely, R is a ∗-Schreier domain if whenever A,B1, B2 are ∗-invertible ∗-
ideals of R and A ⊇ B1B2, then A = (A1A2)∗ for some (∗-invertible) ∗-ideals
A1, A2 of R with Ai ⊇ Bi for i = 1, 2. We remark that the concepts of t-Schreier
domains and d-Schreier domains (as the name of quasi-Schreier domains) were
already introduced as a generalization of Prüfer v-multiplication domains and
proved very useful in [5, 11, 12]. An integral domain R is called a ∗-GCD
domain if the intersection of two ∗-invertible ∗-ideal is ∗-invertible (cf., [16,
Definition 17.6]). Then d-GCD domains are exactly generalized GCD-domains,
which are introduced in [1] and further investigated in [3]. For I, J ∈ I∗(R),
an ordered group under the partial order A ≤ B ⇔ B ⊆ A, sup(I, J) exists if
and only if I ∩ J is ∗-invertible, and hence sup(I, J) = I ∩ J . It follows that
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R is a ∗-GCD domain if and only if I∗(R) is a lattice-ordered group (cf., [3,
Theorem 1]). Thus every ∗-GCD domain is a ∗-Schreier domain.

Theorem 2.5. The following conditions are equivalent for an integral domain
R.

(1) I +
∗ (R) is a free semigroup with a set of free generators consisting of

∗-coatoms.
(2) R satisfies ACC on ∗-invertible ∗-ideals and R is a ∗-GCD domain.
(3) R satisfies ACC on ∗-invertible ∗-ideals and R is a ∗-Schreier domain.
(4) R satisfies ACC on ∗-invertible ∗-ideals and the ∗-coatoms are prime

∗-ideals.
(5) R is a Krull domain and Fv(R) = I∗(R).
(6) R is a Krull domain and F+

v (R) = I +
∗ (R).

(7) R satisfies ACC on ∗-invertible ∗-ideals and every nonzero principal
ideal of R can be uniquely decomposed into a ∗-product of ∗-coatoms.

(8) Every nonzero principal ideal of R uniquely decomposes into a ∗-product
of prime ∗-ideals.

(9) Every nonzero principal ideal of R can be written as a finite ∗-product
of height-one prime ideals.

Proof. (1) ⇒ (2). Note that the ordered group I∗(R) is isomorphic to a direct
sum of copies of Z, the additive group of integers. Thus by the remark before
Theorem 2.5 R is a ∗-GCD domain. The rest is clear.

(2) ⇒ (3). This follows from the remark before Theorem 2.5.
(3) ⇒ (4). It is easily seen that in a ∗-Schreier domain every ∗-coatom is a

prime ∗-ideal.
(4) ⇒ (1). The existence of a decomposition into ∗-coatoms follows from

Lemma 2.2. From the primeness of the ∗-coatoms, it follows that they are free
generators; that is, the equality (P1 · · ·Pm)∗ = (Q1 · · ·Qs)∗ implies that m = s
and that there exists a permutation σ such that Pi = Qσ(i).

(1) ⇒ (7). This is clear.
(7) ⇒ (4). Let P be a ∗-coatom of I +

∗ (R), and let a, b be nonzero nonunits
of R with ab ∈ P . It suffices to show that a ∈ P or b ∈ P . By (7), there
are some ∗-coatoms P1, . . . , Pn, Q1, . . . , Qk such that aR = (P1 · · ·Pn)∗ and
bR = (Q1 · · ·Qk)∗; in particular, abR = (P1 · · ·PnQ1 · · ·Qk)∗. Since abR ⊆ P ,
we have I := abP−1 ⊆ R and abR = (PI)∗. Clearly, I is ∗-invertible, and hence
I = (P ′

1 · · ·P ′
l )∗ for some ∗-coatoms P ′

i ; so (P1 · · ·PnQ1 · · ·Qk)∗ = abR =
(PP ′

1 · · ·P ′
l )∗. Hence by the uniqueness, we have P = Pi or P = Qj , and

therefore a ∈ P or b ∈ P .
(5) ⇔ (6) ⇒ (4). These are clear because each v-ideal is a ∗-ideal.
(7) ⇒ (5). We first note that each nonzero nonunit of R can be written as

a finite ∗-product of height-one prime ∗-ideals of R by Lemma 2.4 and the (7)
⇒ (4) above. Next, let P be a height-one prime ideal of R. Then by Lemma
2.4, P is a ∗-invertible prime ∗-ideal. Thus we have that P ⊊ PP−1; so RP

is a rank-one DVR. Also, aR = (P1 · · ·Pn)∗ implies that a is contained in a
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finite number of height-one prime ideals of R. Suppose that aR : bR ⊊ R for
a, b ∈ R. Then the proof of [10, Theorem 3.2] also shows that aR : bR ⊆ P for
some P ∈ X1(R), and thus R =

∩
P∈X1(R) RP [15, Ex. 22, p. 52]. Thus R is a

Krull domain.
Next, let I be a v-ideal of R. Then I = (P1 · · ·Pn)v for some height-one

prime ideals P1, . . . , Pn of R because R is a Krull domain. Note that each Pi

is ∗-invertible by the above proof; so P1 · · ·Pn is ∗-invertible, and hence by
Lemma 2.1 I = (P1 · · ·Pn)∗. Since I−1 = (P−1 · · ·P−1

n )∗, we have (II−1)∗
= ((P1 · · ·Pn)∗P

−1 · · ·P−1
n )∗ = ((P1P

−1
1 )∗ · · · (PnP

−1
n )∗)∗ = R. Thus I is ∗-

invertible.
(1) ⇒ (8). This follows from Lemma 2.3.
(8) ⇒ (9). This follows from Lemma 2.4.
(9) ⇒ (5). Note that by (9) each nonzero a ∈ K can be uniquely written

as aR = (
∏
{P vP (a) | P ∈ X1(R)})∗, where vP (a) ∈ Z and vP (a) = 0 for

almost all P . Hence for each height-one prime P the assignment vP (a) defines
a discrete valuation on K. Since a ∈ R if and only if vP (a) ≥ 0 for all P ,
denoting by VP the valuation ring of vP , we have that R =

∩
VP with finite

character. Thus R is a Krull domain such that each v-ideal is ∗-invertible. □

We remark that for ∗ = d, Theorem 2.5 is essentially in [11, 14, 20].

3. When I +
∗ (R) is a free semigroup for ∗ = ∗f

As in Section 2, we denote by R an integral domain with quotient field K, ∗
is a star-operation on R, ∗f is the finite character star-operation on R induced
by ∗, and I +

∗ (R) is the semigroup of ∗-invertible integral ∗-ideals of R. In this
section, we study when I +

∗ (R) is a free semigroup for ∗ = ∗f .
We first give an example of a star-operation ∗ such that ∗ is not of finite

type, yet Theorem 2.5 holds for it. Following the referee’s remark, such a star-
operation has the potential of being very useful for answering other questions
in the literature.

Example 3.1. Let D be a π-domain, {Xα} an infinite set of indetermi-
nates over D, and {Qλ} the set of (nonzero) finitely generated prime ideals
of D[{Xα}]. It is known that D[{Xα}] is a π-domain (cf. [1, p. 200]) and
D[{Xα}] =

∩
λ D[{Xα}]Qλ

. For each nonzero fractional ideal A of D[{Xα}],
if we define

A∗ =
∩
λ

AD[{Xα}]Qλ
,

then ∗ is a star-operation on D[{Xα}] [2, Theorem 1]. Again by [2, Theorem
1], if we let M = ({Xα}), then M∗ = D[{Xα}], because M is not contained
in any of Qλ. But M∗f

̸= D[{Xα}] by the definition of ∗. Thus ∗ ̸= ∗f , i.e.,
∗ is not of finite type. Finally, since D[{Xα}] is a π-domain, each nonzero
principal ideal of D[{Xα}] is a finite product (and thus ∗-product since d < ∗)
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of height-one prime ideals. Thus ∗ is not of finite type but Theorem 2.5 holds
for this star-operation.

The following result comes from Lemma 2.1 and [21, Corollary 4.5].

Lemma 3.2. If P is a ∗f -invertible prime ideal of R such that P∗f
⊊ R, then

(a) If I is a ∗f -invertible ∗f -ideal containing P , then I = P = P∗f
;

(b) P is a t-invertible t-maximal ideal.

To characterize ∗-locally factorial Krull domains in terms of “∗-LPI domain”
in Theorem 3.7, we need the notion of a ∗-LPI domain, that is, an integral do-
main in which every nonzero ∗-locally principal ideal is ∗-invertible. This notion
first appeared in [22] for ∗ = t, in the context of integral domains, essentially
Prüfer v-multiplication domains and slightly more general domains. Then it
appears in [12] in the context of t-Schreier domains and in [7] as a defining
property for “Locally Principal ideals are Invertible”-domains with ∗ = d.

Lemma 3.3. Let ∗ be of finite character on the integral domain R, and suppose
that R is a ∗-LPI domain. If RM satisfies ACC on principal ideals of RM for
every ∗-maximal ideal M of R, then R satisfies ACC on ∗-invertible ∗-ideals
of R.

Proof. Consider an increasing chain of ∗-invertible ∗-ideals: I1 ⊆ I2 ⊆ · · · . Let
I := lim

→
In. Then I is a ∗-ideal of R, since ∗ is of finite character. It is sufficient

to show that I is ∗-invertible.
For every ∗-maximal ideal M , we have IRM = I⊗RRM = lim

→
(In⊗RRM ) =

lim
→

(InRM ) = lim
→

(anRM ) = aRM , where all an and a are nonzero elements

of RM . It then follows that I is ∗-invertible, since I is a ∗-locally principal
ideal. □

Lemma 3.4 (cf. [13, Lemma 4.23]). If P is a ∗-invertible prime ∗-ideal and
Q is a ∗-invertible ∗-ideal such that Q ⊈ P, then (P k ∩ Q)∗ = (P kQ)∗ for all
integers k > 0.

Proof. We have (P k ∩Q)∗ = (P kA)∗ = (QB)∗ for some ∗-ideals A and B, and
thus (QB)∗ ⊆ (P k)∗. Since Q ⊈ P , from [16, Theorem 13.2(iv)] we deduce

that B ⊆ (P k)∗. Thus we have B = (P kC)∗ for some ∗-ideal C, and hence
(P k ∩ Q)∗ = (QB)∗ = (P kQC)∗ ⊆ (P kQ)∗. And the reverse inclusion is
obvious. □

Proposition 3.5 (cf. [13, Corollary 4.24]). If Pi (1 ≤ i ≤ k) are ∗-invertible
prime ∗-ideals of height-one such that Pi ̸= Pj for i ̸= j, then (

∩k
1 P

ni
i )∗ =

(
∏k

1 P
ni
i )∗.

Proof. We proceed by induction on the number k of ideals. For k = 1 the
assertion is obvious. Assume that it is true for k = s, and deduce it for
k = s+ 1. We need to verify that ((

∩s
1 P

ni
i ) ∩ P

ns+1

s+1 )∗ = ((
∏s

1 P
ni
i ) · Pns+1

s+1 )∗.
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By induction hypothesis, (
∩s

1 P
ni
i )∗ = (

∏s
1 P

ni
i )∗. Now the assertion follows

from Lemma 3.4. □

Lemma 3.6. Let ∗ be of finite character on the integral domain R, and suppose
that R is a ∗-LPI domain. If RM is factorial for each ∗-maximal ideal M , then
every nonzero principal ideal of R decomposes into a ∗-product of prime ∗-
ideals.

Proof. It follows from Lemma 3.3 that R satisfies ACC on ∗-invertible ∗-ideals
of R, and hence every nonzero proper principal ideal aR of R decomposes into
a ∗-product of ∗-coatoms, say aR = (

∏s
i=1 P

ni
i )∗ (all the Pi are distinct). We

will prove that {Pi}1≤i≤s is the set of height-one prime ideals containing a, and

a ∈ (Pni
i )∗ and a ̸∈ (Pni+1

i )∗.

Consider the set X
(1)
a of height-one prime ideals of R containing a.

(1) X
(1)
a is not empty. Indeed, from the fact that a

1 ∈ Q for some height-
one prime ideal Q of RM (where M is a ∗-maximal ideal of R) it follows that

a ∈ Q ∩R ∈ X
(1)
a .

(2) Every element P of X
(1)
a is ∗-invertible. Indeed, let M be an arbitrary

∗-maximal ideal of R. Then PRM is a height-one prime ideal of RM if P ⊆ M ,
and so a t-ideal. Since RM is factorial, PRM is principal by [17, p. 284], and
hence P is ∗-locally principal. Thus P is ∗-invertible.

(3) X
(1)
a is finite. Indeed, if P ∈ X

(1)
a , then (Pn1

1 · · ·Pns
s )∗ = aR ⊆ P . Thus

we have Pi ⊆ P . Since P is a ∗-invertible ∗-ideal and Pi is a ∗-coatom, P = Pi.

Thus X
(1)
a is finite.

(4) Let X
(1)
a = {Qj}j∈J , and also a ∈ (Q

mj

j )∗ and a ̸∈ (Q
mj+1
j )∗. By

Proposition 3.5, we have (
∏

j∈J Q
mj

j )∗ = (
∩

j∈J Q
mj

j )∗ ⊇ (
∏s

i P
ni
i )∗. It remains

to show that for every Pi there exists Qj(i) ∈ X
(1)
a such that Qj(i) = Pi. Let

M be a ∗-maximal ideal of R such that aR ⊆ Pi ⊆ M . In RM there exists a
minimal prime ideal N ⊇ PiRM . We have that a ∈ Pi ⊆ N ∩ R and N ∩ R is
a height-one prime ideal in R, and thus it is ∗-invertible. From this we deduce

that N ∩R = Qj(i) ∈ X
(1)
a . The assertion is thus proved, since Qj(i) = Pi. □

Let V be a non-discrete valuation domain of (Krull) dimension 1. Then V
does not have a v-maximal ideal, and hence VM is a factorial domain for each
v-maximal ideal M of V . However, each nonzero principal ideal of V cannot
be expressed as a finite v-product of v-maximal ideals. Thus, in Lemma 3.6,
we need the assumption that ∗ is of finite character.

In the following, we characterize ∗-locally factorial Krull domains.

Theorem 3.7. If ∗ is of finite character, then the statements in Theorem 2.5
are equivalent to each of the following:

(10) R is a ∗-LPI domain and RM is factorial for every ∗-maximal ideal M
of R.
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(11) R is a Krull domain and RM is factorial for every ∗-maximal ideal M
of R.

Proof. (7) ⇒ (10). Let I be a nonzero ∗-locally principal ideal of R. Then
I is a t-ideal, and since R is a Krull domain, I is t-invertible. Therefore I is
∗-invertible by (7). Next, let M be a ∗-maximal ideal of R. Then RM is a Krull
domain; so to show that RM is a factorial domain, it suffices to show that each
height-one prime ideal of RM is principal. Let Q be a height-one prime ideal
of RM . Then Q = PRM for some height-one prime ideal P of R. By (7), P
is ∗-invertible, and hence Q = PRM is invertible. Thus Q is principal because
RM is quasi-local.

(10) ⇒ (8). This follows from Lemma 3.3 and Lemma 3.6.
(9) ⇔ (11). [16, Exercise 22.7]. □

We remark that if we take ∗ = d in Theorem 3.7, then it is well known that
the statements in Theorem 3.7 are equivalent to R being a π-domain ([1, 17]).
In the case of ∗ = t (resp., w), it follows from [17, Theorem 3.9] (resp., [18,
Theorem 3.6]) that the equivalent conditions in Theorem 3.7 are equivalent to
R being a Krull domain.

Recall that R is a ∗-Dedekind domain if every nonzero ideal of R is ∗-
invertible, while R is a ∗-Prüfer domain if every nonzero finitely generated
of R is ∗-invertible. Hence a Dedekind domain is a d-Dedekind domain; a
Prüfer domain is a d-Prüfer domain; and a v-domain is a v-Prüfer domain.
It is well known that each nonzero ideal of R is v-invertible if and only if R
is completely integrally closed [15, Theorem 34.3]. Hence R is a v-Dedekind
domain if and only if R is completely integrally closed.

Corollary 3.8. Let ∗ be a finite character star-operation on an integral domain
R. Then the following conditions are equivalent.

(1) R is a ∗-Dedekind domain.
(2) Every ∗-maximal ideal of R is ∗-invertible, and R satisfies ACC on

∗-invertible ∗-ideals of R.
(3) I +

∗ (R) is a free semigroup with a system of generators consisting of
∗-coatoms, and (I + J)∗ is ∗-invertible for any I, J ∈ I +

∗ (R).
(4) R is a ∗-Prüfer domain, and I +

∗ (R) is a free semigroup with a system
of generators consisting of ∗-coatoms.

(5) R is a Krull domain and ∗ = t.
(6) R is a ∗-Prüfer domain and R satisfies ACC on ∗-invertible integral

∗-ideals of R.
(7) R is a ∗-Prüfer and ∗-factorable domain.
(8) R is a unique ∗-factorable domain and every prime ∗-ideal of R is ∗-

maximal.

Proof. (1) ⇒ (4). Clearly, R is a ∗-Prüfer domain. Also, I +
∗ (R) is free with

base ∗-Spec(R) = X1(R) [16, Corollary 23.3 i)]. Now the second assertion
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follows from the fact that a ∗-invertible prime ∗-ideal is ∗-nonfactorable, and
hence a ∗-coatom.

(4) ⇒ (3). This follows because every ∗-finite type ideal of a ∗-Prüfer domain
is ∗-invertible.

(3) ⇒ (2). It suffices to show that every ∗-maximal ideal of R is ∗-invertible.
Let M be a ∗-maximal ideal of R and let 0 ̸= a ∈ M . Then by (3), aR =

(P k1
1 · · ·P kn

n )∗, where P1, . . . , Pn are ∗-coatoms with Ps ̸= Pr for s ̸= r. Hence
Pi ⊆ M for some i. We will show that M = Pi. Suppose for a contradiction
that there exists b ∈ M but b ̸∈ Pi. Then bR = (Qm1

1 · · ·Qml

l )∗ ⊆ M , where
{Qi} is a set of distinct ∗-coatoms of R. Hence Qk ⊆ M for some k. In
addition, Qk ̸= Pi. Since (Qk +Pi)∗ is a ∗-invertible ∗-ideal by (3), (Qk +Pi)∗
is a t-invertible t-ideal of R. But then M ⊇ (Qk+Pi)∗ = (Qk+Pi)t = R, since
Qk and Pi are t-maximal (by Lemma 3.2). This is a contradiction.

(2) ⇒ (1). By [16, Theorem 23.3], it suffices to show that every prime ∗-
ideal of R is ∗-invertible. If R satisfies ACC on ∗-invertible ∗-ideals, then by
Lemma 2.2, every ∗-invertible ∗-ideal is a ∗-product of ∗-coatoms. Thus by
Lemma 2.3, every ∗-invertible ∗-ideal is a ∗-product of prime ∗-ideals. Hence
it follows from hypothesis and Proposition 2.4 that every ∗-maximal ideal of R
has height-one, that is, every prime ∗-ideal is ∗-maximal. Therefore again by
hypothesis, every prime ∗-ideal of R is ∗-invertible.

(1) ⇒ (5). Let I be a nonzero ideal of R. Then (II−1)∗ = R by (1), and
hence I is t-invertible and I∗ = It by Lemma 2.2. Thus R is a Krull domain
and ∗ = t.

(5) ⇒ (1). This is clear.
(4) ⇒ (6). This follows from Theorem 3.7.
(6) ⇒ (2). Let M be a ∗-maximal ideal of R. Choose a nonzero a1 ∈ M .

If a1R = M , then M is ∗-invertible; so assume a1R ⊊ M . Choose another
a2 ∈ M \ a1R. If (a1, a2)R = M , then M is ∗-invertible because R is ∗-Prüfer.
If (a1, a2)R ⊊ M , choose an a3 ∈ M \ (a1, a2)R. Repeating this process,
we have a1R ⊆ (a1, a2)R ⊆ · · · ⊆ M . Since R is ∗-Prüfer, each nonzero
finitely generated ideal is ∗-invertible, and hence there is an integer n such that
M = (a1, . . . , an)R. Thus M is ∗-invertible.

(5) ⇒ (7). This follows from the fact that an integral domain R is a Krull
domain if and only if R is a t-Prüfer and t-factorable domain ([8, Theorem 9]).

(7) ⇒ (1). Mutatis mutandis, the proof is analogous to that of [8, Theorem
9].

(5) ⇒ (8). This follows from the fact that an integral domain R is a Krull
domain if and only if R is a unique t-factorable domain ([8, Theorem 12]).

(8) ⇒ (5). This follows from [10, Theorem 3.2 and Corollary 3.3]. □
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