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INTEGRAL DOMAINS WITH A FREE SEMIGROUP OF
*-INVERTIBLE INTEGRAL #IDEALS

Gyu WHAN Cuanc' anp Hwankoo Kivt

ABSTRACT. Let * be a star-operation on an integral domain R, and let
ZF(R) be the semigroup of -invertible integral #-ideals of R. In this
article, we introduce the concept of a *-coatom, and we then characterize
when 7 (R) is a free semigroup with a set of free generators consisting of
#-coatoms. In particular, we show that .Z;" (R) is a free semigroup if and
only if R is a Krull domain and each v-invertible v-ideal is *-invertible.
As a corollary, we obtain some characterizations of *-Dedekind domains.

1. Introduction

Let R be an integral domain, and let % be a star-operation (defined later)
on R. Let Z.(R) (resp., Z«(R), Z(R)) be the set of nonzero fractional x-
ideals (resp., *-invertible *-ideals, principal ideals) of R. Then %,(R) forms
a commutative monoid under *-multiplication, that is, for any A, B € Z,(R),
Ax B := (AB).. Moreover .Z,(R) is a subgroup of %#,(R) and Z(R) is a
subgroup of Z,(R). Let ZS (R) (resp., 2. (R), 2T (R)) be the positive cone
of Z,(R) (resp., Z«(R), Z(R)) which consists of the nonzero integral x-ideals
(resp., *-invertible x-ideals, principal ideals) of R. The structure of an integral
domain R depends heavily on the properties of Z,(R), #S(R), Z(R), or
Z7*(R). For instance, it is well-known that R is a Dedekind domain if and only
if Z(R) is a free semigroup with base Spec(R)\ {0}. In [6], it was determined
when %#,(R) is finitely generated as a monoid. Recently in [4], it was further
investigated and extended to a commutative ring with zero divisors. In [8],
among other things, it was shown that R is a Krull domain if and only if .%;" (R)
is a free semigroup with a set of free generators consisting of t-nonfactorable
ideals. Later the concept of *-nonfactorability of ideals was further studied in
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[10, 18, 19]. In particular, it was shown in [10, Theorem 3.2] that if .Z (R)
is a free semigroup with a set of free generators consisting of *-nonfactorable
ideals, then R is a Krull domain. Finally, in [20], it was characterized when
S d+ (R) is a free semigroup with a system of generators consisting of coatoms.

In this article, we define the notion of *-coatoms for any star-operation *
and we then characterize when .7 (R) is a free semigroup with a set of free
generators consisting of x-coatoms. More precisely, we show that Z,(R) is a
free semigroup if and only if R is a Krull domain and .%,(R) = %,(R) if and
only if every nonzero principal ideal of R can be expressed as a finite *-product
of height-one prime ideals. In particular, if  is of finite character, then 7, (R)
is a free semigroup if and only if each nonzero *-locally principal ideal of R is
x-invertible and R, is a factorial domain for all *-maximal ideals M of R. As
a byproduct, we obtain some characterizations of *-Dedekind domains.

Let R be an integral domain with quotient field K. Let .#(R) be the set
of nonzero fractional ideals of R. A mapping A — A, of Z(R) into Z(R)
is called a star-operation on R if the following conditions are satisfied for all
ae€ K\ {0} and A, B € #(R):

(i) (aR)« = aR,(aA), = aA,;
(i) AC A,, if AC B, then A, C B,;
(iil) (As) = As.

It is easy to show that for all A, B € #(R), (AB). = (AB.)+ = (A«B.)«. An
A € F(R) is called a x-ideal if A = A,. A x-ideal is called a *-maximal ideal if
it is maximal among proper integral x-ideals. We denote by x-Max(R) (resp.,
x-Spec(R)) the set of all x-maximal ideals (resp., prime x-ideals) of R.

Given any star-operation * on R, we can construct another star-operation
¢ defined by A, := (J{J. | J is a nonzero finitely generated subideal of A}
for A € F(R). Clearly, if A € Z(R) is finitely generated, then A, = A,,. We
say that * is of finite character if * = x; and that *; is the finite character
star-operation induced by . It is well-known that if « = %, then *-Max(R) # ()
when R is not a field; a x-maximal ideal is a prime ideal; each proper integral -
ideal is contained in a *-maximal ideal; each prime ideal minimal over a x-ideal
is a prime *-ideal (in particular, each height-one prime ideal is a prime *-ideal);
and R = (pc,_nax(r) F2p- Let  be any star-operation on R. An A € #(R) is
said to be *-invertible if (AA™1), = R, where A™! = {z € K|rA C R}. We say
that A € Z(R) is of *-finite type if A, = B, for some finitely generated ideal
B of R. Also, A € Z(R) is said to be x-locally principal if ARp is principal
for all *-maximal ideals P of R. It is well-known that A is *¢-invertible if and
only if A is of *s-finite type and A is xy-locally principal.

The most important examples of star-operations are (1) the d-operation
defined by Ay := A, (2) the v-operation defined by A, := (A71)~1, (3) the
t-operation defined by ¢ := vy, and (4) the w-operation defined by A4, :=
{r € K | Jr C A for some finitely generated ideal J with J=! = R} for
A € Z(R). Note that all star-operations above except for v are of finite
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character. For any star-operation % on R and for any A € .7 (R), we have that
ACA CA, (le,d<x<v)and A C A,, C Ay 50 (As)y = Ay = (Ay)s
and (A.;): = Ay = (A¢)«,. In particular, a v-ideal (resp., t-ideal) is a *-ideal
(resp., *y-ideal). General references for any undefined terminology or notation
are [15, 16].

2. When 7 (R) is a free semigroup

Throughout this section, R denotes an integral domain with quotient field
K, * is a star-operation on R, *f is the finite character star-operation on R
induced by *, and #;7(R) is the semigroup of *-invertible integral x-ideals of
R. In this section, we study when #F(R) is a free semigroup.

As mentioned in the introduction, in [8], the authors introduced the con-
cepts of #-nonfactorable ideals and (unique) *-factorable domains, and they
then characterized several integral domains including Krull domains using these
concepts. We say that an ideal N of R is *-nonfactorable if it is a proper *-
ideal and N = (AB)., where A and B are ideals of R, implies either A, = R
or B, = R. We also say that an integral domain R is a *-factorable domain
(resp., unique *-factorable domain) if every proper x-ideal of R can be factored
(resp., factored uniquely) into a *-product of *-nonfactorable ideals.

Definition. An ideal A of .#7(R) is called a *-coatom of #F(R) if A is not
expressible as a nontrivial x-product of x-invertible ideals of R.

We remark that the *-coatoms of .#" (R) coincide with the maximal elements
of ZF(R) (with respect to set inclusion). By definition a *-coatom is a *-
invertible *-ideal. Hence it is precisely a x-nonfactorable *-invertible *-ideal.
We next recall some results from [21, Theorem 1.1] on *-invertible ideals, which
are very useful in the subsequent arguments.

Lemma 2.1. If I is a nonzero fractional ideal of R, then
(1) I*f g It;
(2) If I is x-invertible, then I is v-invertible and I, = I;
(3) If I is *p-invertible, then I is t-invertible and I, = I, = Iy = I,,.

Lemma 2.2. If R satisfies ACC on x-invertible x-ideals, then every x-invertible
x-ideal is expressible as a (finite) *-product of *-coatoms.

Proof. This follows from the following easy observation: Let I C J be x-ideals
of R with J, *-invertible. Then there exists a *-ideal A such that I = (JA),. O

The proof of the following lemma is essentially the same as that of [8, Lemma
11]. However for the sake of completeness we include its proof.

Lemma 2.3. Suppose that Z7(R) is a free semigroup with a set of free gen-
erators consisting of x-coatoms, and let N be a proper x-invertible x-ideal of
R. Then N is a x-coatom if and only if N is prime (if and only if N is
x-nonfactorable).
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Proof. Let N be a #-coatom. Let ab € N for nonzero nonunits a,b € R with
a ¢ N. Then aR = (P;---P,)., where each P; is a *-coatom. Note that
each P, # N since a ¢ N. Also, bR = (Q1---Qs)«, where each @Q; is a
x-coatom. Note that abN~! is a proper s-invertible *-ideal (if abN~! = R,
then N = ((abN~!)N), = abR = (aR)(bR) is not a *-coatom); so we may
write abN~t = (M --- M,)., where each M, is a *-coatom. Thus abR =
(NMy - M) = (P PQ1- - Qs)s. Since £ (R) is a free semigroup with
a set of free generators consisting of *-coatoms, we have that NV = @; for some
j. Thus b € bR = (Q1---Qs)« € N, and hence N is prime. Conversely, it was
already observed in [8] that a x-invertible prime #-ideal is *-nonfactorable, and
hence a *-coatom. (]

Lemma 2.4. If every nonzero proper principal ideal of R decomposes into a
x-product of prime x-ideals, then the set of the height-one primes equals the set
of the x-invertible prime x-ideals.

Proof. Let P be a *-invertible prime *-ideal of R and assume that the height
of P is greater than 1. Then there exists a nonzero prime ideal @ C P. For
0+#qe€Q, wehave Q D gR = (Py -+ Ps)., where the P; are prime *-ideals.
It then follows that P 2 @ 2 P; for some i (1 < ¢ < s). Thus P, = (PZ).
for some *-invertible x-ideal Z # R. This implies Z C P;. So if we replace Z
by P; in the equality P, = (PZ), and apply the *-invertibility of P;, we get a
contradiction. For the reverse inclusion, let P be a height-one prime ideal of
R. Then P is minimal over a nonzero principal ideal aR = (P; - - - P,)«, where
the P; are prime x-ideals. Thus P = P; for some i, and so P is a x-invertible
prime x-ideal. ]

Let X!(R) be the set of height-one prime ideals of R. An integral domain
R is a Krull domain if (i) Rp is a rank-one DVR for each P € X!(R), (ii)
R =pex1(r) Bp, and (iii) each nonzero element of R is contained in finitely
many height-one prime ideals of R. It is well known that R is a Krull domain
if and only if each nonzero proper principal ideal of R is a t-product of (¢-
invertible) prime ideals [17, Theorem 3.9].

We say that R is a x-Schreier domain if Z,(R) is a Riesz group. More
precisely, R is a *-Schreier domain if whenever A, By, By are x-invertible x-
ideals of R and A D B; By, then A = (A;1A3), for some (*-invertible) *-ideals
Ay, As of Rwith A; O B; for i = 1,2. We remark that the concepts of ¢-Schreier
domains and d-Schreier domains (as the name of quasi-Schreier domains) were
already introduced as a generalization of Priifer v-multiplication domains and
proved very useful in [5, 11, 12]. An integral domain R is called a x-GCD
domain if the intersection of two #-invertible x-ideal is *-invertible (cf., [16,
Definition 17.6]). Then d-GCD domains are exactly generalized GCD-domains,
which are introduced in [1] and further investigated in [3]. For I,J € Z.(R),
an ordered group under the partial order A < B < B C A, sup(I,J) exists if
and only if I N J is x-invertible, and hence sup(Z,J) = I N J. It follows that
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R is a *-GCD domain if and only if .#,(R) is a lattice-ordered group (cf., [3,
Theorem 1]). Thus every *-GCD domain is a *-Schreier domain.

Theorem 2.5. The following conditions are equivalent for an integral domain
R.

(1) ZF(R) is a free semigroup with a set of free generators consisting of
*-coatoms.

(2) R satisfies ACC on x-invertible x-ideals and R is a x-GCD domain.

(3) R satisfies ACC on x-invertible x-ideals and R is a x-Schreier domain.

(4) R satisfies ACC on x-invertible x-ideals and the *-coatoms are prime
x-ideals.

(5) R is a Krull domain and F,(R) = Z.(R).

(6) R is a Krull domain and Z,f(R) = Z(R).

(7) R satisfies ACC on x-invertible x-ideals and every nonzero principal
ideal of R can be uniquely decomposed into a *x-product of x-coatoms.

(8) FEwery nonzero principal ideal of R uniquely decomposes into a x-product
of prime *-ideals.

(9) Ewvery nonzero principal ideal of R can be written as a finite x-product
of height-one prime ideals.

Proof. (1) = (2). Note that the ordered group .#,(R) is isomorphic to a direct
sum of copies of Z, the additive group of integers. Thus by the remark before
Theorem 2.5 R is a *-GCD domain. The rest is clear.

(2) = (3). This follows from the remark before Theorem 2.5.

(3) = (4). Tt is easily seen that in a *-Schreier domain every x-coatom is a
prime x-ideal.

(4) = (1). The existence of a decomposition into *-coatoms follows from
Lemma 2.2. From the primeness of the x-coatoms, it follows that they are free
generators; that is, the equality (P -+ Py )« = (Q1 - Qs)« implies that m = s
and that there exists a permutation o such that P; = Qq ;-

(1) = (7). This is clear.

(7) = (4). Let P be a x-coatom of .Z;*(R), and let a, b be nonzero nonunits
of R with ab € P. It suffices to show that a € P or b € P. By (7), there
are some *-coatoms Pi,..., P, Q1,...,Q such that aR = (P;---P,). and
bR = (Q1 -+ Qp)x; in particular, abR = (P, -+ P, Q1+ Qk)«. Since abR C P,
we have I := abP~! C R and abR = (PI).. Clearly, I is -invertible, and hence
I = (P]---P/), for some x-coatoms P/; so (P1---P,Q1---Qk)x = abR =
(PP ---P/).. Hence by the uniqueness, we have P = P, or P = @, and
therefore a € P or b € P.

(5) & (6) = (4). These are clear because each v-ideal is a x-ideal.

(7) = (5). We first note that each nonzero nonunit of R can be written as
a finite *-product of height-one prime #-ideals of R by Lemma 2.4 and the (7)
= (4) above. Next, let P be a height-one prime ideal of R. Then by Lemma
2.4, P is a *-invertible prime *-ideal. Thus we have that P C PP~!; so Rp
is a rank-one DVR. Also, aR = (P;--- P,). implies that a is contained in a
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finite number of height-one prime ideals of R. Suppose that aR : bR C R for
a,b € R. Then the proof of [10, Theorem 3.2] also shows that aR : bR C P for
some P € X!(R), and thus R = Npexi(r) Bp [15, Ex. 22, p. 52]. Thus R is a
Krull domain.

Next, let I be a v-ideal of R. Then I = (P;---P,), for some height-one
prime ideals Py,..., P, of R because R is a Krull domain. Note that each P;
is *-invertible by the above proof; so P --- P, is x-invertible, and hence by
Lemma 2.1 I = (Py---P,),. Since I™! = (P~1... P71), we have (IT71).
= (PP P - PN, = (PP Y- (PoPY)y)« = R. Thus T is
invertible.

(1) = (8). This follows from Lemma 2.3.

(8) = (9). This follows from Lemma 2.4.

(9) = (5). Note that by (9) each nonzero a € K can be uniquely written
as aR = ([[{P"*@ | P € X'(R)})., where vp(a) € Z and vp(a) = 0 for
almost all P. Hence for each height-one prime P the assignment vp(a) defines
a discrete valuation on K. Since ¢ € R if and only if vp(a) > 0 for all P,
denoting by Vp the valuation ring of vp, we have that R = (| Vp with finite
character. Thus R is a Krull domain such that each v-ideal is #-invertible. O

We remark that for * = d, Theorem 2.5 is essentially in [11, 14, 20].

3. When #7(R) is a free semigroup for x =

As in Section 2, we denote by R an integral domain with quotient field K,
is a star-operation on R, *; is the finite character star-operation on R induced
by *, and .Z;"(R) is the semigroup of *-invertible integral *-ideals of R. In this
section, we study when .#F(R) is a free semigroup for * = ;.

We first give an example of a star-operation * such that * is not of finite
type, yet Theorem 2.5 holds for it. Following the referee’s remark, such a star-
operation has the potential of being very useful for answering other questions
in the literature.

Example 3.1. Let D be a w-domain, {X,} an infinite set of indetermi-
nates over D, and {Qx} the set of (nonzero) finitely generated prime ideals
of D{X4}]. It is known that D[{X,}] is a w-domain (cf. [1, p. 200]) and
D{X.}] = Ny P{Xa}lq,- For each nonzero fractional ideal A of D[{X4}],
if we define

A* = nAD[{Xa}]QAv
A

then x is a star-operation on D[{X,}] [2, Theorem 1]. Again by [2, Theorem
1], if we let M = ({X4}), then M, = D[{X,}], because M is not contained
in any of Qx. But M., # D[{X.}] by the definition of *. Thus * # %y, i.e.,
% s not of finite type. Finally, since D[{X,}] is a w-domain, each nonzero
principal ideal of D[{X4}] is a finite product (and thus x-product since d < %)
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of height-one prime ideals. Thus *x is not of finite type but Theorem 2.5 holds
for this star-operation.

The following result comes from Lemma 2.1 and [21, Corollary 4.5].

Lemma 3.2. If P is a xg-invertible prime ideal of R such that P., C R, then
(a) If I is a *¢-invertible * s-ideal containing P, then I = P = P, ;

*f7
(b) P is a t-invertible t-mazimal ideal.

To characterize *-locally factorial Krull domains in terms of “x-LPI domain”
in Theorem 3.7, we need the notion of a x-LPI domain, that is, an integral do-
main in which every nonzero x-locally principal ideal is *-invertible. This notion
first appeared in [22] for * = ¢, in the context of integral domains, essentially
Priifer v-multiplication domains and slightly more general domains. Then it
appears in [12] in the context of t-Schreier domains and in [7] as a defining
property for “Locally Principal ideals are Invertible”-domains with * = d.

Lemma 3.3. Let * be of finite character on the integral domain R, and suppose
that R is a x-LPI domain. If Ry satisfies ACC on principal ideals of Ry for
every x-maximal ideal M of R, then R satisfies ACC on x-invertible x-ideals
of R.

Proof. Consider an increasing chain of *-invertible *-ideals: Iy C I, C ---. Let
I :=1lim I,,. Then I is a x-ideal of R, since * is of finite character. It is sufficient
—
to show that I is x-invertible.
For every x-maximal ideal M, we have IRy = IQr Ry = lim(I, ® g Ryr) =
—

lim(I,Rpr) = lim(an,Rpr) = aRps, where all a,, and a are nonzero elements
— —

of Ry;. It then follows that I is x-invertible, since I is a *-locally principal
ideal. O

Lemma 3.4 (cf. [13, Lemma 4.23]). If P is a *-invertible prime x-ideal and
Q is a x-invertible x-ideal such that Q ¢ P, then (P* N Q). = (P*Q). for all
integers k > 0.

Proof. We have (PN Q). = (P*A). = (QB). for some *-ideals A and B, and
thus (@B). C (P*).. Since Q ¢ P, from [16, Theorem 13.2(iv)] we deduce
that B C (P*),. Thus we have B = (P*C), for some *-ideal C, and hence
(PN Q). = (@B). = (P*QC). C (P*Q).. And the reverse inclusion is
obvious. O

Proposition 3.5 (cf. [13, Corollary 4.24]). If P; (1 < i < k) are x-invertible

prime *-ideals of height-one such that P; # P; for i # j, then (ﬂlf P, =
k T4

(ITy B*)--

Proof. We proceed by induction on the number k of ideals. For k = 1 the
assertion is obvious. Assume that it is true for & = s, and deduce it for

k = s+ 1. We need to verify that (0] ") NP1 ) = (T15 P - Pogit ).
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By induction hypothesis, (] ")« = ([1] P*)+. Now the assertion follows
from Lemma 3.4. O

Lemma 3.6. Let x be of finite character on the integral domain R, and suppose
that R is a x-LPI domain. If Ry is factorial for each *-maximal ideal M, then
every nonzero principal ideal of R decomposes into a *-product of prime -
ideals.

Proof. 1t follows from Lemma 3.3 that R satisfies ACC on #-invertible x-ideals
of R, and hence every nonzero proper principal ideal aR of R decomposes into
a #-product of *-coatoms, say aR = ([[;_, P/""). (all the P; are distinct). We
will prove that {P;}1<i<s is the set of height-one prime ideals containing a, and
a€ (PM"), and a & (P1),.

Consider the set Xél) of height-one prime ideals of R containing a.

(1) X s not empty. Indeed, from the fact that § € @ for some height-
one prime ideal @ of Rps (where M is a x-maximal ideal of R) it follows that
acQnRexV.

(2) Every element P of X,gl) is #-invertible. Indeed, let M be an arbitrary
x-maximal ideal of R. Then PR, is a height-one prime ideal of Ry, if P C M,
and so a t-ideal. Since Ry is factorial, PRy is principal by [17, p. 284], and
hence P is *-locally principal. Thus P is *-invertible.

(3) X'V is finite. Indeed, if P € XSV, then (P --- P), = aR C P. Thus
we have P; C P. Since P is a x-invertible x-ideal and P; is a *-coatom, P = P;.
Thus Xt(ll) is finite.

(4) Let xM = {Qj}jes, and also a € (Q]7). and a ¢ (Q;nﬁl)*. By
Proposition 3.5, we have (][, Q7). = (Njes Q) 2 (TI; P/")«- It remains
to show that for every P; there exists Q) € Xél) such that Q;;) = P;. Let
M be a *-maximal ideal of R such that aR C P; C M. In Rj,; there exists a
minimal prime ideal N O P;Rp;. We have that a € P, C NN R and NN R is
a height-one prime ideal in R, and thus it is *-invertible. From this we deduce

that NN R = Q) € X(Sl). The assertion is thus proved, since Q;; = P;. U

Let V' be a non-discrete valuation domain of (Krull) dimension 1. Then V
does not have a v-maximal ideal, and hence V), is a factorial domain for each
v-maximal ideal M of V. However, each nonzero principal ideal of V' cannot
be expressed as a finite v-product of v-maximal ideals. Thus, in Lemma 3.6,
we need the assumption that * is of finite character.

In the following, we characterize x-locally factorial Krull domains.

Theorem 3.7. If x is of finite character, then the statements in Theorem 2.5
are equivalent to each of the following:

(10) R is a x-LPI domain and Ry is factorial for every x-mazximal ideal M
of R.
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(11) R is a Krull domain and Ry is factorial for every x-mazimal ideal M
of R.

Proof. (7) = (10). Let I be a nonzero x-locally principal ideal of R. Then
I is a t-ideal, and since R is a Krull domain, I is ¢-invertible. Therefore I is
x-invertible by (7). Next, let M be a x-maximal ideal of R. Then R, is a Krull
domain; so to show that Rj; is a factorial domain, it suffices to show that each
height-one prime ideal of Rj; is principal. Let @ be a height-one prime ideal
of Ryr. Then @Q = PRy, for some height-one prime ideal P of R. By (7), P
is #-invertible, and hence Q = PR, is invertible. Thus @ is principal because
Ry is quasi-local.

(10) = (8). This follows from Lemma 3.3 and Lemma 3.6.

(9) & (11). [16, Exercise 22.7]. O

We remark that if we take * = d in Theorem 3.7, then it is well known that
the statements in Theorem 3.7 are equivalent to R being a m-domain ([1, 17]).
In the case of * = t (resp., w), it follows from [17, Theorem 3.9] (resp., [18,
Theorem 3.6]) that the equivalent conditions in Theorem 3.7 are equivalent to
R being a Krull domain.

Recall that R is a *-Dedekind domain if every nonzero ideal of R is *-
invertible, while R is a *-Prifer domain if every nonzero finitely generated
of R is x-invertible. Hence a Dedekind domain is a d-Dedekind domain; a
Priifer domain is a d-Priifer domain; and a v-domain is a v-Priifer domain.
It is well known that each nonzero ideal of R is v-invertible if and only if R
is completely integrally closed [15, Theorem 34.3]. Hence R is a v-Dedekind
domain if and only if R is completely integrally closed.

Corollary 3.8. Let x be a finite character star-operation on an integral domain
R. Then the following conditions are equivalent.

(1) R is a x-Dedekind domain.

(2) Ewvery x-mazimal ideal of R is x-invertible, and R satisfies ACC on
x-invertible x-ideals of R.

(3) ZF(R) is a free semigroup with a system of generators consisting of
x-coatoms, and (I + J). is x-invertible for any I,J € ZF(R).

(4) R is a x-Prifer domain, and 7 (R) is a free semigroup with a system
of generators consisting of x-coatoms.

(5) R is a Krull domain and x = t.

(6) R is a x-Prifer domain and R satisfies ACC on x-invertible integral
x-ideals of R.

(7) R is a x-Prifer and *-factorable domain.

(8) R is a unique x-factorable domain and every prime x-ideal of R is *-
maximal.

Proof. (1) = (4). Clearly, R is a *-Priifer domain. Also, .#.F(R) is free with
base x-Spec(R) = X!(R) [16, Corollary 23.3 i)]. Now the second assertion
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follows from the fact that a x-invertible prime *-ideal is *-nonfactorable, and
hence a *-coatom.

(4) = (3). This follows because every *-finite type ideal of a *-Priifer domain
is *-invertible.

(3) = (2). It suffices to show that every x-maximal ideal of R is *-invertible.
Let M be a x-maximal ideal of R and let 0 # a € M. Then by (3), aR =
(Plk1 ..« Pkn), where Py, ..., P, are x-coatoms with P, # P, for s # r. Hence
P; C M for some i. We will show that M = P;. Suppose for a contradiction
that there exists b € M but b ¢ P;. Then bR = (Q7" ---Q;"")« € M, where
{Qi} is a set of distinct *-coatoms of R. Hence Q C M for some k. In
addition, Q # P;. Since (Q + P;)« is a #-invertible x-ideal by (3), (Qx + P;)«
is a t-invertible t-ideal of R. But then M D (Qr + P;)« = (Qx + P;): = R, since
Qr and P; are t-maximal (by Lemma 3.2). This is a contradiction.

(2) = (1). By [16, Theorem 23.3], it suffices to show that every prime *-
ideal of R is x-invertible. If R satisfies ACC on #-invertible *-ideals, then by
Lemma 2.2, every *-invertible %-ideal is a *-product of x-coatoms. Thus by
Lemma 2.3, every *-invertible x-ideal is a x-product of prime *-ideals. Hence
it follows from hypothesis and Proposition 2.4 that every *-maximal ideal of R
has height-one, that is, every prime x-ideal is *-maximal. Therefore again by
hypothesis, every prime *-ideal of R is *-invertible.

(1) = (5). Let I be a nonzero ideal of R. Then (II7!), = R by (1), and
hence I is t-invertible and I, = I; by Lemma 2.2. Thus R is a Krull domain
and * = t.

(5) = (1). This is clear.

(4) = (6). This follows from Theorem 3.7.

(6) = (2). Let M be a x-maximal ideal of R. Choose a nonzero a; € M.
If a;R = M, then M is *-invertible; so assume a1 R C M. Choose another
as € M\ a1R. If (a1,a2)R = M, then M is x-invertible because R is *-Priifer.
If (a1,a2)R € M, choose an az € M \ (a1,a2)R. Repeating this process,
we have a1 R C (aj,a2)R C --- C M. Since R is x-Priifer, each nonzero
finitely generated ideal is *-invertible, and hence there is an integer n such that
M = (a1,...,an)R. Thus M is *-invertible.

(5) = (7). This follows from the fact that an integral domain R is a Krull
domain if and only if R is a t-Prifer and ¢-factorable domain ([8, Theorem 9)]).

(7) = (1). Mutatis mutandis, the proof is analogous to that of [8, Theorem
9.

(5) = (8). This follows from the fact that an integral domain R is a Krull
domain if and only if R is a unique ¢-factorable domain ([8, Theorem 12]).

(8) = (5). This follows from [10, Theorem 3.2 and Corollary 3.3]. O
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