INTEGRAL DOMAINS WITH A FREE SEMIGROUP OF *-INVERTIBLE INTEGRAL *-IDEALS

Gyu Whan Chang[†] and Hwankoo Kim[‡]

ABSTRACT. Let * be a star-operation on an integral domain R, and let $\mathscr{I}^+_*(R)$ be the semigroup of *-invertible integral *-ideals of R. In this article, we introduce the concept of a *-coatom, and we then characterize when $\mathscr{I}^+_*(R)$ is a free semigroup with a set of free generators consisting of *-coatoms. In particular, we show that $\mathscr{I}^+_*(R)$ is a free semigroup if and only if R is a Krull domain and each v-invertible v-ideal is *-invertible. As a corollary, we obtain some characterizations of *-Dedekind domains.

1. Introduction

Let R be an integral domain, and let * be a star-operation (defined later) on R. Let $\mathscr{F}_*(R)$ (resp., $\mathscr{I}_*(R)$, $\mathscr{P}(R)$) be the set of nonzero fractional *ideals (resp., *-invertible *-ideals, principal ideals) of R. Then $\mathscr{F}_*(R)$ forms a commutative monoid under *-multiplication, that is, for any $A, B \in \mathscr{F}_*(R)$, $A * B := (AB)_*$. Moreover $\mathscr{I}_*(R)$ is a subgroup of $\mathscr{F}_*(R)$ and $\mathscr{P}(R)$ is a subgroup of $\mathscr{I}_*(R)$. Let $\mathscr{F}^+_*(R)$ (resp., $\mathscr{I}^+_*(R)$, $\mathscr{P}^+(R)$) be the positive cone of $\mathscr{F}_*(R)$ (resp., $\mathscr{I}_*(R)$, $\mathscr{P}(R)$) which consists of the nonzero integral *-ideals (resp., *-invertible *-ideals, principal ideals) of R. The structure of an integral domain R depends heavily on the properties of $\mathscr{F}_*(R)$, $\mathscr{F}^+_*(R)$, $\mathscr{P}(R)$, or $\mathscr{P}^+(R)$. For instance, it is well-known that R is a Dedekind domain if and only if $\mathscr{F}_d^+(R)$ is a free semigroup with base $\operatorname{Spec}(R) \setminus \{0\}$. In [6], it was determined when $\mathscr{F}_d(R)$ is finitely generated as a monoid. Recently in [4], it was further investigated and extended to a commutative ring with zero divisors. In [8], among other things, it was shown that R is a Krull domain if and only if $\mathscr{F}_t^+(R)$ is a free semigroup with a set of free generators consisting of t-nonfactorable ideals. Later the concept of *-nonfactorability of ideals was further studied in

O2011 The Korean Mathematical Society

Received July 4, 2010; Revised July 30, 2011.

²⁰¹⁰ Mathematics Subject Classification. 13A15, 13F15, 13E99.

Key words and phrases. star-operation, free semigroup of *-invertible *-ideals, *-locally factorial Krull domain, π -domain, *-Dedekind domain.

[†] This work was supported by the University of Incheon Research Grant in 2010.

[‡] This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0011996).

[10, 18, 19]. In particular, it was shown in [10, Theorem 3.2] that if $\mathscr{F}^+_*(R)$ is a free semigroup with a set of free generators consisting of *-nonfactorable ideals, then R is a Krull domain. Finally, in [20], it was characterized when $\mathscr{I}^+_d(R)$ is a free semigroup with a system of generators consisting of coatoms.

In this article, we define the notion of *-coatoms for any star-operation * and we then characterize when $\mathscr{I}^+_*(R)$ is a free semigroup with a set of free generators consisting of *-coatoms. More precisely, we show that $\mathscr{I}_*(R)$ is a free semigroup if and only if R is a Krull domain and $\mathscr{I}_v(R) = \mathscr{I}_*(R)$ if and only if every nonzero principal ideal of R can be expressed as a finite *-product of height-one prime ideals. In particular, if * is of finite character, then $\mathscr{I}_*(R)$ is a free semigroup if and only if each nonzero *-locally principal ideal of R is *-invertible and R_M is a factorial domain for all *-maximal ideals M of R. As a byproduct, we obtain some characterizations of *-Dedekind domains.

Let R be an integral domain with quotient field K. Let $\mathscr{F}(R)$ be the set of nonzero fractional ideals of R. A mapping $A \mapsto A_*$ of $\mathscr{F}(R)$ into $\mathscr{F}(R)$ is called a *star-operation* on R if the following conditions are satisfied for all $a \in K \setminus \{0\}$ and $A, B \in \mathscr{F}(R)$:

- (i) $(aR)_* = aR, (aA)_* = aA_*;$
- (ii) $A \subseteq A_*$, if $A \subseteq B$, then $A_* \subseteq B_*$;
- (iii) $(A_*)_* = A_*$.

It is easy to show that for all $A, B \in \mathscr{F}(R)$, $(AB)_* = (AB_*)_* = (A_*B_*)_*$. An $A \in \mathscr{F}(R)$ is called a *-*ideal* if $A = A_*$. A *-ideal is called a *-maximal ideal if it is maximal among proper integral *-ideals. We denote by *-Max(R) (resp., *-Spec(R)) the set of all *-maximal ideals (resp., prime *-ideals) of R.

Given any star-operation * on R, we can construct another star-operation $*_f$ defined by $A_{*_f} := \bigcup \{J_* \mid J \text{ is a nonzero finitely generated subideal of } A\}$ for $A \in \mathscr{F}(R)$. Clearly, if $A \in \mathscr{F}(R)$ is finitely generated, then $A_* = A_{*_f}$. We say that * is of finite character if $* = *_f$ and that $*_f$ is the finite character star-operation induced by *. It is well-known that if $* = *_f$, then $*\text{-Max}(R) \neq \emptyset$ when R is not a field; a *-maximal ideal is a prime ideal; each proper integral *-ideal is contained in a *-maximal ideal; each prime ideal minimal over a *-ideal is a prime *-ideal (in particular, each height-one prime ideal is a prime *-ideal); and $R = \bigcap_{P \in *-\text{Max}(R)} R_P$. Let * be any star-operation on R. An $A \in \mathscr{F}(R)$ is said to be *-invertible if $(AA^{-1})_* = R$, where $A^{-1} = \{x \in K | xA \subseteq R\}$. We say that $A \in \mathscr{F}(R)$ is of *-finite type if $A_* = B_*$ for some finitely generated ideal B of R. Also, $A \in \mathscr{F}(R)$ is said to be *-locally principal if AR_P is principal for all *-maximal ideals P of R. It is well-known that A is $*_f$ -invertible if and only if A is of $*_f$ -finite type and A is $*_f$ -locally principal.

The most important examples of star-operations are (1) the *d*-operation defined by $A_d := A$, (2) the *v*-operation defined by $A_v := (A^{-1})^{-1}$, (3) the *t*-operation defined by $t := v_f$, and (4) the *w*-operation defined by $A_w :=$ $\{x \in K \mid Jx \subseteq A \text{ for some finitely generated ideal } J \text{ with } J^{-1} = R\}$ for $A \in \mathscr{F}(R)$. Note that all star-operations above except for v are of finite character. For any star-operation * on R and for any $A \in \mathscr{F}(R)$, we have that $A \subseteq A_* \subseteq A_v$ (i.e., $d \leq * \leq v$) and $A \subseteq A_{*_f} \subseteq A_t$; so $(A_*)_v = A_v = (A_v)_*$ and $(A_{*_f})_t = A_t = (A_t)_{*_f}$. In particular, a v-ideal (resp., t-ideal) is a *-ideal (resp., $*_f$ -ideal). General references for any undefined terminology or notation are [15, 16].

2. When $\mathscr{I}^+_*(R)$ is a free semigroup

Throughout this section, R denotes an integral domain with quotient field K, * is a star-operation on R, $*_f$ is the finite character star-operation on R induced by *, and $\mathscr{I}^+_*(R)$ is the semigroup of *-invertible integral *-ideals of R. In this section, we study when $\mathscr{I}^+_*(R)$ is a free semigroup.

As mentioned in the introduction, in [8], the authors introduced the concepts of *-nonfactorable ideals and (unique) *-factorable domains, and they then characterized several integral domains including Krull domains using these concepts. We say that an ideal N of R is *-nonfactorable if it is a proper *-ideal and $N = (AB)_*$, where A and B are ideals of R, implies either $A_* = R$ or $B_* = R$. We also say that an integral domain R is a *-factorable domain (resp., unique *-factorable domain) if every proper *-ideal of R can be factored (resp., factored uniquely) into a *-product of *-nonfactorable ideals.

Definition. An ideal A of $\mathscr{I}^+_*(R)$ is called a *-coatom of $\mathscr{I}^+_*(R)$ if A is not expressible as a nontrivial *-product of *-invertible ideals of R.

We remark that the *-coatoms of $\mathscr{I}^+_*(R)$ coincide with the maximal elements of $\mathscr{I}^+_*(R)$ (with respect to set inclusion). By definition a *-coatom is a *invertible *-ideal. Hence it is precisely a *-nonfactorable *-invertible *-ideal. We next recall some results from [21, Theorem 1.1] on *-invertible ideals, which are very useful in the subsequent arguments.

Lemma 2.1. If I is a nonzero fractional ideal of R, then

- (1) $I_{*_f} \subseteq I_t;$
- (2) If I is *-invertible, then I is v-invertible and $I_* = I_v$;
- (3) If I is $*_f$ -invertible, then I is t-invertible and $I_* = I_{*_f} = I_t = I_v$.

Lemma 2.2. If R satisfies ACC on *-invertible *-ideals, then every *-invertible *-ideal is expressible as a (finite) *-product of *-coatoms.

Proof. This follows from the following easy observation: Let $I \subseteq J$ be *-ideals of R with J, *-invertible. Then there exists a *-ideal A such that $I = (JA)_*$. \Box

The proof of the following lemma is essentially the same as that of [8, Lemma 11]. However for the sake of completeness we include its proof.

Lemma 2.3. Suppose that $\mathscr{I}^+_*(R)$ is a free semigroup with a set of free generators consisting of *-coatoms, and let N be a proper *-invertible *-ideal of R. Then N is a *-coatom if and only if N is prime (if and only if N is *-nonfactorable).

Proof. Let N be a *-coatom. Let $ab \in N$ for nonzero nonunits $a, b \in R$ with $a \notin N$. Then $aR = (P_1 \cdots P_r)_*$, where each P_i is a *-coatom. Note that each $P_i \neq N$ since $a \notin N$. Also, $bR = (Q_1 \cdots Q_s)_*$, where each Q_j is a *-coatom. Note that abN^{-1} is a proper *-invertible *-ideal (if $abN^{-1} = R$, then $N = ((abN^{-1})N)_* = abR = (aR)(bR)$ is not a *-coatom); so we may write $abN^{-1} = (M_1 \cdots M_u)_*$, where each M_k is a *-coatom. Thus $abR = (NM_1 \cdots M_u)_* = (P_1 \cdots P_rQ_1 \cdots Q_s)_*$. Since $\mathscr{I}_*^+(R)$ is a free semigroup with a set of free generators consisting of *-coatoms, we have that $N = Q_j$ for some j. Thus $b \in bR = (Q_1 \cdots Q_s)_* \subseteq N$, and hence N is prime. Conversely, it was already observed in [8] that a *-invertible prime *-ideal is *-nonfactorable, and hence a *-coatom. □

Lemma 2.4. If every nonzero proper principal ideal of R decomposes into a *-product of prime *-ideals, then the set of the height-one primes equals the set of the *-invertible prime *-ideals.

Proof. Let P be a *-invertible prime *-ideal of R and assume that the height of P is greater than 1. Then there exists a nonzero prime ideal $Q \subseteq P$. For $0 \neq q \in Q$, we have $Q \supseteq qR = (P_1 \cdots P_s)_*$, where the P_i are prime *-ideals. It then follows that $P \supseteq Q \supseteq P_i$ for some i $(1 \leq i \leq s)$. Thus $P_i = (PZ)_*$ for some *-invertible *-ideal $Z \neq R$. This implies $Z \subseteq P_i$. So if we replace Z by P_i in the equality $P_i = (PZ)_*$ and apply the *-invertibility of P_i , we get a contradiction. For the reverse inclusion, let P be a height-one prime ideal of R. Then P is minimal over a nonzero principal ideal $aR = (P_1 \cdots P_n)_*$, where the P_i are prime *-ideals. Thus $P = P_i$ for some i, and so P is a *-invertible prime *-ideal. \Box

Let $X^1(R)$ be the set of height-one prime ideals of R. An integral domain R is a Krull domain if (i) R_P is a rank-one DVR for each $P \in X^1(R)$, (ii) $R = \bigcap_{P \in X^1(R)} R_P$, and (iii) each nonzero element of R is contained in finitely many height-one prime ideals of R. It is well known that R is a Krull domain if and only if each nonzero proper principal ideal of R is a *t*-product of (*t*-invertible) prime ideals [17, Theorem 3.9].

We say that R is a *-Schreier domain if $\mathscr{I}_*(R)$ is a Riesz group. More precisely, R is a *-Schreier domain if whenever A, B_1, B_2 are *-invertible *ideals of R and $A \supseteq B_1B_2$, then $A = (A_1A_2)_*$ for some (*-invertible) *-ideals A_1, A_2 of R with $A_i \supseteq B_i$ for i = 1, 2. We remark that the concepts of t-Schreier domains and d-Schreier domains (as the name of quasi-Schreier domains) were already introduced as a generalization of Prüfer v-multiplication domains and proved very useful in [5, 11, 12]. An integral domain R is called a *-GCDdomain if the intersection of two *-invertible *-ideal is *-invertible (cf., [16, Definition 17.6]). Then d-GCD domains are exactly generalized GCD-domains, which are introduced in [1] and further investigated in [3]. For $I, J \in \mathscr{I}_*(R)$, an ordered group under the partial order $A \leq B \Leftrightarrow B \subseteq A$, $\sup(I, J)$ exists if and only if $I \cap J$ is *-invertible, and hence $\sup(I, J) = I \cap J$. It follows that R is a *-GCD domain if and only if $\mathscr{I}_*(R)$ is a lattice-ordered group (cf., [3, Theorem 1]). Thus every *-GCD domain is a *-Schreier domain.

Theorem 2.5. The following conditions are equivalent for an integral domain R.

- (1) $\mathscr{I}^+_*(R)$ is a free semigroup with a set of free generators consisting of *-coatoms.
- (2) R satisfies ACC on *-invertible *-ideals and R is a *-GCD domain.
- (3) R satisfies ACC on *-invertible *-ideals and R is a *-Schreier domain.
- (4) R satisfies ACC on *-invertible *-ideals and the *-coatoms are prime *-ideals.
- (5) R is a Krull domain and $\mathscr{F}_v(R) = \mathscr{I}_*(R)$.
- (6) R is a Krull domain and $\mathscr{F}_v^+(R) = \mathscr{I}_*^+(R)$.
- (7) R satisfies ACC on *-invertible *-ideals and every nonzero principal ideal of R can be uniquely decomposed into a *-product of *-coatoms.
- (8) Every nonzero principal ideal of R uniquely decomposes into a *-product of prime *-ideals.
- (9) Every nonzero principal ideal of R can be written as a finite *-product of height-one prime ideals.

Proof. (1) \Rightarrow (2). Note that the ordered group $\mathscr{I}_*(R)$ is isomorphic to a direct sum of copies of \mathbb{Z} , the additive group of integers. Thus by the remark before Theorem 2.5 R is a *-GCD domain. The rest is clear.

 $(2) \Rightarrow (3)$. This follows from the remark before Theorem 2.5.

 $(3) \Rightarrow (4)$. It is easily seen that in a *-Schreier domain every *-coatom is a prime *-ideal.

 $(4) \Rightarrow (1)$. The existence of a decomposition into *-coatoms follows from Lemma 2.2. From the primeness of the *-coatoms, it follows that they are free generators; that is, the equality $(P_1 \cdots P_m)_* = (Q_1 \cdots Q_s)_*$ implies that m = sand that there exists a permutation σ such that $P_i = Q_{\sigma(i)}$.

 $(1) \Rightarrow (7)$. This is clear.

 $(7) \Rightarrow (4)$. Let P be a *-coatom of $\mathscr{I}_{*}^{+}(R)$, and let a, b be nonzero nonunits of R with $ab \in P$. It suffices to show that $a \in P$ or $b \in P$. By (7), there are some *-coatoms $P_1, \ldots, P_n, Q_1, \ldots, Q_k$ such that $aR = (P_1 \cdots P_n)_*$ and $bR = (Q_1 \cdots Q_k)_*$; in particular, $abR = (P_1 \cdots P_n Q_1 \cdots Q_k)_*$. Since $abR \subseteq P$, we have $I := abP^{-1} \subseteq R$ and $abR = (PI)_*$. Clearly, I is *-invertible, and hence $I = (P'_1 \cdots P'_l)_*$ for some *-coatoms P'_i ; so $(P_1 \cdots P_n Q_1 \cdots Q_k)_* = abR =$ $(PP'_1 \cdots P'_l)_*$. Hence by the uniqueness, we have $P = P_i$ or $P = Q_j$, and therefore $a \in P$ or $b \in P$.

 $(5) \Leftrightarrow (6) \Rightarrow (4)$. These are clear because each v-ideal is a *-ideal.

 $(7) \Rightarrow (5)$. We first note that each nonzero nonunit of R can be written as a finite *-product of height-one prime *-ideals of R by Lemma 2.4 and the (7) \Rightarrow (4) above. Next, let P be a height-one prime ideal of R. Then by Lemma 2.4, P is a *-invertible prime *-ideal. Thus we have that $P \subsetneq PP^{-1}$; so R_P is a rank-one DVR. Also, $aR = (P_1 \cdots P_n)_*$ implies that a is contained in a finite number of height-one prime ideals of R. Suppose that $aR : bR \subsetneq R$ for $a, b \in R$. Then the proof of [10, Theorem 3.2] also shows that $aR : bR \subseteq P$ for some $P \in X^1(R)$, and thus $R = \bigcap_{P \in X^1(R)} R_P$ [15, Ex. 22, p. 52]. Thus R is a Krull domain.

Next, let *I* be a *v*-ideal of *R*. Then $I = (P_1 \cdots P_n)_v$ for some height-one prime ideals P_1, \ldots, P_n of *R* because *R* is a Krull domain. Note that each P_i is *-invertible by the above proof; so $P_1 \cdots P_n$ is *-invertible, and hence by Lemma 2.1 $I = (P_1 \cdots P_n)_*$. Since $I^{-1} = (P^{-1} \cdots P_n^{-1})_*$, we have $(II^{-1})_* = ((P_1 \cdots P_n)_*P^{-1} \cdots P_n^{-1})_* = ((P_1P_1^{-1})_* \cdots (P_nP_n^{-1})_*)_* = R$. Thus *I* is *-invertible.

 $(1) \Rightarrow (8)$. This follows from Lemma 2.3.

 $(8) \Rightarrow (9)$. This follows from Lemma 2.4.

 $(9) \Rightarrow (5)$. Note that by (9) each nonzero $a \in K$ can be uniquely written as $aR = (\prod \{P^{v_P(a)} \mid P \in X^1(R)\})_*$, where $v_P(a) \in \mathbb{Z}$ and $v_P(a) = 0$ for almost all P. Hence for each height-one prime P the assignment $v_P(a)$ defines a discrete valuation on K. Since $a \in R$ if and only if $v_P(a) \ge 0$ for all P, denoting by V_P the valuation ring of v_P , we have that $R = \bigcap V_P$ with finite character. Thus R is a Krull domain such that each v-ideal is *-invertible. \Box

We remark that for * = d, Theorem 2.5 is essentially in [11, 14, 20].

3. When $\mathscr{I}^+_*(R)$ is a free semigroup for $* = *_f$

As in Section 2, we denote by R an integral domain with quotient field K, * is a star-operation on R, $*_f$ is the finite character star-operation on R induced by *, and $\mathscr{I}^+_*(R)$ is the semigroup of *-invertible integral *-ideals of R. In this section, we study when $\mathscr{I}^+_*(R)$ is a free semigroup for $* = *_f$.

We first give an example of a star-operation * such that * is not of finite type, yet Theorem 2.5 holds for it. Following the referee's remark, such a star-operation has the potential of being very useful for answering other questions in the literature.

Example 3.1. Let D be a π -domain, $\{X_{\alpha}\}$ an infinite set of indeterminates over D, and $\{Q_{\lambda}\}$ the set of (nonzero) finitely generated prime ideals of $D[\{X_{\alpha}\}]$. It is known that $D[\{X_{\alpha}\}]$ is a π -domain (cf. [1, p. 200]) and $D[\{X_{\alpha}\}] = \bigcap_{\lambda} D[\{X_{\alpha}\}]_{Q_{\lambda}}$. For each nonzero fractional ideal A of $D[\{X_{\alpha}\}]$, if we define

$$A_* = \bigcap_{\lambda} AD[\{X_{\alpha}\}]_{Q_{\lambda}},$$

then * is a star-operation on $D[\{X_{\alpha}\}]$ [2, Theorem 1]. Again by [2, Theorem 1], if we let $M = (\{X_{\alpha}\})$, then $M_* = D[\{X_{\alpha}\}]$, because M is not contained in any of Q_{λ} . But $M_{*_f} \neq D[\{X_{\alpha}\}]$ by the definition of *. Thus $* \neq *_f$, i.e., * is not of finite type. Finally, since $D[\{X_{\alpha}\}]$ is a π -domain, each nonzero principal ideal of $D[\{X_{\alpha}\}]$ is a finite product (and thus *-product since d < *)

of height-one prime ideals. Thus * is not of finite type but Theorem 2.5 holds for this star-operation.

The following result comes from Lemma 2.1 and [21, Corollary 4.5].

Lemma 3.2. If P is a $*_f$ -invertible prime ideal of R such that $P_{*_f} \subseteq R$, then

- (a) If I is a $*_f$ -invertible $*_f$ -ideal containing P, then $I = P = P_{*_f}$;
- (b) P is a t-invertible t-maximal ideal.

To characterize *-locally factorial Krull domains in terms of "*-LPI domain" in Theorem 3.7, we need the notion of a *-LPI domain, that is, an integral domain in which every nonzero *-locally principal ideal is *-invertible. This notion first appeared in [22] for * = t, in the context of integral domains, essentially Prüfer v-multiplication domains and slightly more general domains. Then it appears in [12] in the context of t-Schreier domains and in [7] as a defining property for "Locally Principal ideals are Invertible"-domains with * = d.

Lemma 3.3. Let * be of finite character on the integral domain R, and suppose that R is a *-LPI domain. If R_M satisfies ACC on principal ideals of R_M for every *-maximal ideal M of R, then R satisfies ACC on *-invertible *-ideals of R.

Proof. Consider an increasing chain of *-invertible *-ideals: $I_1 \subseteq I_2 \subseteq \cdots$. Let $I := \lim_{\to} I_n$. Then I is a *-ideal of R, since * is of finite character. It is sufficient to show that I is *-invertible.

For every *-maximal ideal M, we have $IR_M = I \otimes_R R_M = \lim_{\to} (I_n \otimes_R R_M) = \lim_{\to} (I_n R_M) = \lim_{\to} (a_n R_M) = aR_M$, where all a_n and a are nonzero elements of R_M . It then follows that I is *-invertible, since I is a *-locally principal ideal.

Lemma 3.4 (cf. [13, Lemma 4.23]). If P is a *-invertible prime *-ideal and Q is a *-invertible *-ideal such that $Q \not\subseteq P$, then $(P^k \cap Q)_* = (P^k Q)_*$ for all integers k > 0.

Proof. We have $(P^k \cap Q)_* = (P^k A)_* = (QB)_*$ for some *-ideals A and B, and thus $(QB)_* \subseteq (P^k)_*$. Since $Q \notin P$, from [16, Theorem 13.2(iv)] we deduce that $B \subseteq (P^k)_*$. Thus we have $B = (P^k C)_*$ for some *-ideal C, and hence $(P^k \cap Q)_* = (QB)_* = (P^k QC)_* \subseteq (P^k Q)_*$. And the reverse inclusion is obvious. □

Proposition 3.5 (cf. [13, Corollary 4.24]). If P_i $(1 \le i \le k)$ are *-invertible prime *-ideals of height-one such that $P_i \ne P_j$ for $i \ne j$, then $(\bigcap_{i=1}^{k} P_i^{n_i})_* = (\prod_{i=1}^{k} P_i^{n_i})_*$.

Proof. We proceed by induction on the number k of ideals. For k = 1 the assertion is obvious. Assume that it is true for k = s, and deduce it for k = s + 1. We need to verify that $((\bigcap_{i=1}^{s} P_i^{n_i}) \cap P_{s+1}^{n_{s+1}})_* = ((\prod_{i=1}^{s} P_i^{n_i}) \cdot P_{s+1}^{n_{s+1}})_*$.

By induction hypothesis, $(\bigcap_{1}^{s} P_{i}^{n_{i}})_{*} = (\prod_{1}^{s} P_{i}^{n_{i}})_{*}$. Now the assertion follows from Lemma 3.4.

Lemma 3.6. Let * be of finite character on the integral domain R, and suppose that R is a *-LPI domain. If R_M is factorial for each *-maximal ideal M, then every nonzero principal ideal of R decomposes into a *-product of prime *ideals.

Proof. It follows from Lemma 3.3 that R satisfies ACC on *-invertible *-ideals of R, and hence every nonzero proper principal ideal aR of R decomposes into a *-product of *-coatoms, say $aR = (\prod_{i=1}^{s} P_i^{n_i})_*$ (all the P_i are distinct). We will prove that $\{P_i\}_{1 \le i \le s}$ is the set of height-one prime ideals containing a, and $a \in (P_i^{n_i})_*$ and $a \notin (P_i^{n_i+1})_*$. Consider the set $X_a^{(1)}$ of height-one prime ideals of R containing a.

(1) $X_a^{(1)}$ is not empty. Indeed, from the fact that $\frac{a}{1} \in Q$ for some heightone prime ideal Q of R_M (where M is a *-maximal ideal of R) it follows that $a \in Q \cap R \in X_a^{(1)}.$

(2) Every element P of $X_a^{(1)}$ is *-invertible. Indeed, let M be an arbitrary *-maximal ideal of R. Then PR_M is a height-one prime ideal of R_M if $P \subseteq M$, and so a t-ideal. Since R_M is factorial, PR_M is principal by [17, p. 284], and hence P is *-locally principal. Thus P is *-invertible.

(3) $X_a^{(1)}$ is finite. Indeed, if $P \in X_a^{(1)}$, then $(P_1^{n_1} \cdots P_s^{n_s})_* = aR \subseteq P$. Thus we have $P_i \subseteq P$. Since P is a *-invertible *-ideal and P_i is a *-coatom, $P = P_i$.

we have $P_i \subseteq P$. Since P is a *-inverticit vector and $I_i \supseteq a$ and $I_j \supseteq a$ and $X_a^{(1)}$ is finite. (4) Let $X_a^{(1)} = \{Q_j\}_{j \in J}$, and also $a \in (Q_j^{m_j})_*$ and $a \notin (Q_j^{m_j+1})_*$. By Proposition 3.5, we have $(\prod_{j \in J} Q_j^{m_j})_* = (\bigcap_{j \in J} Q_j^{m_j})_* \supseteq (\prod_i^s P_i^{n_i})_*$. It remains to show that for every P_i there exists $Q_{j(i)} \in X_a^{(1)}$ such that $Q_{j(i)} = P_i$. Let M be a *-maximal ideal of R such that $aR \subseteq P_i \subseteq M$. In R_M there exists a invited prime ideal $N \supset P_i R_M$. We have that $a \in P_i \subset N \cap R$ and $N \cap R$ is minimal prime ideal $N \supseteq P_i R_M$. We have that $a \in P_i \subseteq N \cap R$ and $N \cap R$ is a height-one prime ideal in R, and thus it is *-invertible. From this we deduce that $N \cap R = Q_{j(i)} \in X_a^{(1)}$. The assertion is thus proved, since $Q_{j(i)} = P_i$. \Box

Let V be a non-discrete valuation domain of (Krull) dimension 1. Then Vdoes not have a v-maximal ideal, and hence V_M is a factorial domain for each v-maximal ideal M of V. However, each nonzero principal ideal of V cannot be expressed as a finite v-product of v-maximal ideals. Thus, in Lemma 3.6, we need the assumption that * is of finite character.

In the following, we characterize *-locally factorial Krull domains.

Theorem 3.7. If * is of finite character, then the statements in Theorem 2.5 are equivalent to each of the following:

(10) R is a *-LPI domain and R_M is factorial for every *-maximal ideal M of R.

(11) R is a Krull domain and R_M is factorial for every *-maximal ideal M of R.

Proof. $(7) \Rightarrow (10)$. Let *I* be a nonzero *-locally principal ideal of *R*. Then *I* is a *t*-ideal, and since *R* is a Krull domain, *I* is *t*-invertible. Therefore *I* is *-invertible by (7). Next, let *M* be a *-maximal ideal of *R*. Then R_M is a Krull domain; so to show that R_M is a factorial domain, it suffices to show that each height-one prime ideal of R_M is principal. Let *Q* be a height-one prime ideal of R_M . Then $Q = PR_M$ for some height-one prime ideal *P* of *R*. By (7), *P* is *-invertible, and hence $Q = PR_M$ is invertible. Thus *Q* is principal because R_M is quasi-local.

 $(10) \Rightarrow (8)$. This follows from Lemma 3.3 and Lemma 3.6.

 $(9) \Leftrightarrow (11)$. [16, Exercise 22.7].

We remark that if we take * = d in Theorem 3.7, then it is well known that the statements in Theorem 3.7 are equivalent to R being a π -domain ([1, 17]). In the case of * = t (resp., w), it follows from [17, Theorem 3.9] (resp., [18, Theorem 3.6]) that the equivalent conditions in Theorem 3.7 are equivalent to R being a Krull domain.

Recall that R is a *-Dedekind domain if every nonzero ideal of R is *invertible, while R is a *-Prüfer domain if every nonzero finitely generated of R is *-invertible. Hence a Dedekind domain is a d-Dedekind domain; a Prüfer domain is a d-Prüfer domain; and a v-domain is a v-Prüfer domain. It is well known that each nonzero ideal of R is v-invertible if and only if Ris completely integrally closed [15, Theorem 34.3]. Hence R is a v-Dedekind domain if and only if R is completely integrally closed.

Corollary 3.8. Let * be a finite character star-operation on an integral domain R. Then the following conditions are equivalent.

- (1) R is a *-Dedekind domain.
- (2) Every *-maximal ideal of R is *-invertible, and R satisfies ACC on *-invertible *-ideals of R.
- (3) $\mathscr{I}^+_*(R)$ is a free semigroup with a system of generators consisting of *-coatoms, and $(I+J)_*$ is *-invertible for any $I, J \in \mathscr{I}^+_*(R)$.
- (4) R is a *-Prüfer domain, and $\mathscr{I}^+_*(R)$ is a free semigroup with a system of generators consisting of *-coatoms.
- (5) R is a Krull domain and * = t.
- (6) R is a *-Prüfer domain and R satisfies ACC on *-invertible integral *-ideals of R.
- (7) R is a *-Prüfer and *-factorable domain.
- (8) R is a unique *-factorable domain and every prime *-ideal of R is *maximal.

Proof. (1) \Rightarrow (4). Clearly, *R* is a *-Prüfer domain. Also, $\mathscr{I}^+_*(R)$ is free with base *-Spec(*R*) = $X^1(R)$ [16, Corollary 23.3 i)]. Now the second assertion

follows from the fact that a *-invertible prime *-ideal is *-nonfactorable, and hence a *-coatom.

 $(4) \Rightarrow (3)$. This follows because every *-finite type ideal of a *-Prüfer domain is *-invertible.

 $(3) \Rightarrow (2)$. It suffices to show that every *-maximal ideal of R is *-invertible. Let M be a *-maximal ideal of R and let $0 \neq a \in M$. Then by (3), $aR = (P_1^{k_1} \cdots P_n^{k_n})_*$, where P_1, \ldots, P_n are *-coatoms with $P_s \neq P_r$ for $s \neq r$. Hence $P_i \subseteq M$ for some i. We will show that $M = P_i$. Suppose for a contradiction that there exists $b \in M$ but $b \notin P_i$. Then $bR = (Q_1^{m_1} \cdots Q_l^{m_l})_* \subseteq M$, where $\{Q_i\}$ is a set of distinct *-coatoms of R. Hence $Q_k \subseteq M$ for some k. In addition, $Q_k \neq P_i$. Since $(Q_k + P_i)_*$ is a *-invertible *-ideal by (3), $(Q_k + P_i)_*$ is a t-invertible t-ideal of R. But then $M \supseteq (Q_k + P_i)_* = (Q_k + P_i)_t = R$, since Q_k and P_i are t-maximal (by Lemma 3.2). This is a contradiction.

 $(2) \Rightarrow (1)$. By [16, Theorem 23.3], it suffices to show that every prime *ideal of R is *-invertible. If R satisfies ACC on *-invertible *-ideals, then by Lemma 2.2, every *-invertible *-ideal is a *-product of *-coatoms. Thus by Lemma 2.3, every *-invertible *-ideal is a *-product of prime *-ideals. Hence it follows from hypothesis and Proposition 2.4 that every *-maximal ideal of Rhas height-one, that is, every prime *-ideal is *-maximal. Therefore again by hypothesis, every prime *-ideal of R is *-invertible.

 $(1) \Rightarrow (5)$. Let *I* be a nonzero ideal of *R*. Then $(II^{-1})_* = R$ by (1), and hence *I* is *t*-invertible and $I_* = I_t$ by Lemma 2.2. Thus *R* is a Krull domain and * = t.

 $(5) \Rightarrow (1)$. This is clear.

 $(4) \Rightarrow (6)$. This follows from Theorem 3.7.

 $(6) \Rightarrow (2)$. Let M be a *-maximal ideal of R. Choose a nonzero $a_1 \in M$. If $a_1R = M$, then M is *-invertible; so assume $a_1R \subsetneq M$. Choose another $a_2 \in M \setminus a_1R$. If $(a_1, a_2)R = M$, then M is *-invertible because R is *-Prüfer. If $(a_1, a_2)R \subsetneq M$, choose an $a_3 \in M \setminus (a_1, a_2)R$. Repeating this process, we have $a_1R \subseteq (a_1, a_2)R \subseteq \cdots \subseteq M$. Since R is *-Prüfer, each nonzero finitely generated ideal is *-invertible, and hence there is an integer n such that $M = (a_1, \ldots, a_n)R$. Thus M is *-invertible.

 $(5) \Rightarrow (7)$. This follows from the fact that an integral domain R is a Krull domain if and only if R is a *t*-Prüfer and *t*-factorable domain ([8, Theorem 9]). (7) \Rightarrow (1). *Mutatis mutandis*, the proof is analogous to that of [8, Theorem 9].

 $(5) \Rightarrow (8)$. This follows from the fact that an integral domain R is a Krull domain if and only if R is a unique *t*-factorable domain ([8, Theorem 12]).

 $(8) \Rightarrow (5)$. This follows from [10, Theorem 3.2 and Corollary 3.3].

Acknowledgement. The authors would like to thank the referee for his/her many helpful suggestions.

References

- [1] D. D. Anderson, π -domains, overrings, and divisorial ideals, Glasgow Math. J. 19 (1978), no. 2, 199–203.
- [2] _____, Star-operation induced by overrings, Comm. Algebra 16 (1988), no. 12, 2535– 2553.
- [3] D. D. Anderson and D. F. Anderson, Generalized GCD-domains, Comment. Math. Univ. St. Paul. 28 (1980), no. 2, 215–221.
- [4] D. D. Anderson and S. Chun, Commutative rings with finitely generated monoids of fractional ideals, J. Algebra 320 (2008), no. 7, 3006–3021.
- [5] D. D. Anderson, T. Dumitrescu, and M. Zafrullah, *Quasi-Schreier domains II*, Comm. Algebra **35** (2007), no. 7, 2096–2104.
- [6] D. D. Anderson, J. L. Mott, and J. Park, Finitely generated monoids of fractional ideals, Comm. Algebra 21 (1993), no. 2, 615–634.
- [7] D. D. Anderson and M. Zafrullah, Integral domains in which nonzero locally principal ideals are invertible, Comm. Algebra 39 (2011), no. 3, 933–941.
- [8] D. F. Anderson, H. Kim, and J. Park, Factorable domains, Comm. Algebra 30 (2002), no. 9, 4113–4120.
- [9] A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grèce (N.S.) 29 (1988), 45–59.
- [10] G. W. Chang and J. Park, Star-invertible ideals of integral domains, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 1, 141–150.
- [11] T. Dumitrescu and R. Moldovan, Quasi-Schreier domains, Math. Rep. (Bucur.) 5(55) (2003), no. 2, 121–126.
- [12] T. Dumitrescu and M. Zafrullah, t-Schreier domains, Comm. Algebra 39 (2011), no. 3, 808–818.
- [13] S. El Baghdadi, M. Fontana, and G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra 193 (2004), no. 1-3, 27–60.
- [14] S. Gabelli, On domains with ACC on invertible ideals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 3, 419–422.
- [15] R. Gilmer, Multiplicative Ideal Theory, Queen's University, Kingston, Ontario, 1992.
- [16] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Marcel Dekker, New York, 1998.
- [17] B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284–299.
- [18] H. Kim, M. O. Kim, and Y. S. Park, Some characterizations of Krull monoids, Algebra Colloq. 14 (2007), no. 3, 469–477.
- [19] H. Kim and Y. S. Park, Some characterizations of Krull domains, J. Pure Appl. Algebra 208 (2007), no. 1, 339–344.
- [20] R. B. Treger, Rings with a free semigroup of invertible ideals, Mat. Sb. (N.S.) 89(131) (1972), 100–109.
- [21] M. Zafrullah, Putting t-invertibility to use, in Non-Noetherian Commutative Ring Theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
- [22] _____, t-invertibility and Bazzoni-like statements, J. Pure Appl. Algebra 214 (2010), no. 5, 654–657.

GYU WHAN CHANG DEPARTMENT OF MATHEMATICS UNIVERSITY OF INCHEON INCHEON 406-772, KOREA *E-mail address:* whan@incheon.ac.kr HWANKOO KIM DEPARTMENT OF INFORMATION SECURITY HOSEO UNIVERSITY ASAN 336-795, KOREA *E-mail address*: hkkim@hoseo.edu