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SOME CHARACTERIZATIONS OF DEDEKIND

MODULES

Tae In Kwon*, Hwankoo Kim**, and Myeong Og Kim***

Abstract. In this article, we generalize the concepts of several
classes of domains (which are related to a Dedekind domain) to a
torsion-free module and it is shown that for a faithful multiplication
module over an integral domain, we characterize Dedekind modules,
cyclic submodule modules, and discrete valuation modules in terms
of factorable modules and a sort of Euclidean algorithm.

1. Introduction

Naoum and Al-Alwan, in [9], introduced invertibility of submodules
generalizing the concept for ideals and gave several properties and ex-
amples of such modules. They also introduced Dedekind and Prüfer
modules (An R-module is called a Dedekind (resp, Prüfer) module if
every nonzero (resp., nonzero finitely generated) submodule of M is in-
vertible) and proved that for a faithful multiplication module M over an
integral domain R, M is a Dedekind (resp., Prüfer) module if and only if
R is a Dedekind (resp., Prüfer) domain. Dedekind modules were further
studied in [2, 10, 12]. In [1], Ali gave several properties of invertible
submodules of multiplication modules and characterizations of faithful
multiplication Dedekind and Prüfer modules.

In this article, we generalize the concepts of several classes of domains
(which are related to a Dedekind domain) to a torsion-free module and
it is shown that for a faithful multiplication module M over an integral
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domain R, we characterize Dedekind modules, cyclic submodule mod-
ules, and discrete valuation modules in terms of factorable modules and
a sort of Euclidean algorithm.

Let R be an integral domain with quotient field K and M be an
R-module. Then M is said to be faithful if annR(M) = 0; M is called
a multiplication module if each submodule N of M has the form IM
for some ideal I of R. Equivalently, M is a multiplication module if
and only if for all submodules N of M , N = (N :R M)M . Now M is
called a cancellation module if for all ideals I and J of R, IM ⊆ JM
implies I ⊆ J . It was shown in [4, Theorem 3.1] that if R is an integral
domain and M is a faithful multiplication R-module, then M is finitely
generated. Thus it follows from [4, Theorem 3.1] that a faithful multi-
plication module M over an integral domain is a cancellation module;
thus we have that I(N :R M) = (IN : M) for all submodules N of M
and all ideals I of R. It was also shown in [5, Lemma 2.1] that if M is
a faithful multiplication R-module over an integral domain R, then M
is torsion-free.

For unexplained terminology and notation, we refer to [6].

2. Factorable modules

In order to characterize Dedekind modules, cyclic submodule mod-
ules, and discrete valuation modules in terms of factorable modules, we
need the following concept of nonfactorable submodules.

Definition 2.1. Let M be a module over an integral domain R. A
submodule N of M is said to be nonfactorable if it is a proper submodule
and N = IL, where I is an ideal of R and L is a submodule of M , implies
that either I = R or L = M .

When M = R in Definition 2.1, a nonfactorable submodule is called
a nonfactorable ideal. Let M be a faithful multiplication module over
an integral domain R. If N is a nonfactorable submodule of M , then
(N : M) is a nonfactorable ideal of R.

Recall from [1, p.27] that a submodule N of an R-module M is said
to be indecomposable if N = IL, where I is an ideal of R and L is a sub-
module of M , implies that either N = L or N = IM . It is shown that
prime submodules are indecomposable and the converse is also true if
M is a faithful multiplication Dedekind module over an integral domain
R ([1, Corollary 3.5]). It is clear that every nonfactorable submodule is
indecomposable, but the converse is not true in general. Also note that
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neither prime submodules are nonfactorable, nor nonfactorable submod-
ules are prime in general. If M is a faithful multiplication Dedekind
module over an integral domain R, then all three concepts mentioned
just above are equivalent.

Lemma 2.2. Let M be a faithful multiplication module over an inte-
gral domain R.

(1) If n is a nonzero proper ideal of R, then n is a nonfactorable ideal
of R if and only if nM is a nonfactorable submodule of M .

(2) If N is a nonzero proper submodule of M , then N is a nonfac-
torable submodule of M if and only if (N : M) is a nonfactorable
ideal of R.

Proof. (1) Suppose that nM = IL for an ideal I of R and a submodule
L of M . Since M is a multiplication module, L = JM for some ideal
J of R. Then nM = IJM . Since M is a cancellation module, n = IJ .
Since n is a nonfactorable ideal of R, either I = R or J = R. In the latter
case, we have L = M . Therefore nM is a nonfactorable submodule of
M .

Conversely suppose that nM is a nonfactorable submodule of M .
Assume that n = IJ for some ideals I, J of R. Then nM = I(JM).
Since nM is nonfactorable, either I = R or JM = M . In the latter
case, we have J = R since M is a cancellation module. Thus n is a
nonfactorable ideal of R.

(2) Since M is a multiplication module, we have N = (N : M)M . N
is nonzero proper, so is (N : M). Hence the result follows from (1).

Definition 2.3. Let M be a module over an integral domain R.
Then M is called a factorable module if each proper submodule A is a
finite product of nonfactorable ideals and a nonfactorable submodule,
i.e., A = I1I2 · · · InN , where Ii is a nonfactorable ideal of R and N is
a nonfactorable submodule of M . Also, M is called a unique factorable
module if each proper submodule can be factored uniquely into a product
of nonfactorable ideals and a nonfactorable submodule.

When M = R in Definition 2.3, a (unique) factorable module is called
a (unique) factorable domain.

Theorem 2.4. Let M be a faithful multiplication module over an
integral domain R. Then M is a (unique) factorable module if and only
if R is a (unique) factorable domain.
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Proof. Suppose that M is a (unique) factorable module and let I
be a nonzero proper ideal of R. Then IM is a nonzero proper sub-
module of M . Hence IM can be factored (uniquely) into a product
of nonfactorable ideals of R and a nonfactorable submodule of M , say
IM = n1 · · · nkN , where each ni is a nonfactorable ideal of R and N is a
nonfactorable submodule of M . Thus IM = n1 · · · nk(N : M)M . Since
M is a cancellation module, I can be factored (uniquely) into a product
of nonfactorable ideals: I = n1 · · · nk(N : M). Therefore R is a (unique)
factorable domain.

Conversely suppose that R is a (unique) factorable domain and let
L be a nonzero proper submodule of M . Then there exists a unique
nonzero proper ideal I of R such that L = IM . By the hypothesis, I
can be factored (uniquely) into a product of nonfactorable ideals: I =
n1 · · · nk for some integer k ≥ 1. Then L = n1 · · · nkM = n1 · · · nk−1(nkM).
Note that (nkM) is a nonfactorable submodule of M . Thus L can be
factored (uniquely) into a product of nonfactorable ideals of R and a
nonfactorable submodule of M . Therefore M is a (unique) factorable
module.

Compare the following result with [1, Theorem 3.4].

Theorem 2.5. Let M be a faithful multiplication module over an
integral domain R. Then the following statements are equivalent.

(1) M is a Dedekind module.
(2) M is a unique factorable module.
(3) M is a Prüfer factorable module.
(4) Every nonzero proper submodule of M can be uniquely expressed

as a finite product of nonfactorable submodules.

Proof. (1) ⇔ (2) ⇔ (3). By [3, Theorem 5], [9, Theorem 3.4 and
Theorem 3.5] (or [12, Theorem 5 and Theorem 8]), Theorem 2.4, and [9,
Theorem 3.6].

(1)⇒ (4). Let N be a nonzero proper submodule of M . Since M is
a multiplication R-module, there is a nonzero proper ideal I of R such
that N = IM . Since R is a Dedekind domain, I = n1 · · · nk (uniquely)
for some nonfactorable ideals ni of R. Thus

N = IM = n1 · · · nkM = (n1M) · · · (nkM) (uniquely).

By Lemma 2.2(1) each niM is a nonfactorable submodule of M .
(4) ⇒ (1). Let I be a nonzero proper ideal of R. Since M is a

cancellation module, IM is a nonzero proper submodule of M . Thus
IM = N1 · · ·Nk (uniquely) for some nonfactorable submodules of M .
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By Lemma 2.2(2) each ni := (Ni : M) is a nonfactorable ideal of R.
Since M is a multiplication module, Ni = (Ni : M)M . Thus

IM = (N1 : M) · · · (Nk : M)M.

Since M is a cancellation module, I = n1 · · · nk (uniquely). Thus R is a
Dedekind domain, and so M is a Dedekind module.

Following [1], an R-module M is called a cyclic submodule module
(CSM) if every submodule of M is cyclic. Obviously a CSM is a Bézout
module. It is also shown that a faithful multiplication module over an
integral domain R is a CSM if and only if R is a PID. Recall that
an R-module M is called a discrete valuation module (DVM) if it is a
Noetherian valuation module [8]. Compare the following result with [3,
Corollary 6].

Corollary 2.6. Let M be a faithful multiplication module over an
integral domain R. Then M is a CSM (resp., DVM) if and only if M is
a factorable Bézout (resp., valuation) module.

Proof. Assume that M is a CSM. Then by [1, Corollary 3.6] M is a
Dedekind module. By Theorem 2.5, M is a factorable Bézout module.

Conversely, suppose that M is a factorable Bézout module. By The-
orem 2.5, M is a Dedekind module. Since M is a Bézout module, it
follows from [1, Corollary 2.4] that M is a GCD module. Hence by [1,
Corollary 3.6] M is a CSM.

Assume that M is a DVM. Then M is a Noetherian valuation module.
Note that valuation module ⇒ Bézout module ⇒ Prüfer module. Then
by [1, Thorem 3.4] M is a Dedekind module. By Theorem 2.5 again M
is a factorable valuation module.

Conversely, suppose that M is a factorable valuation module. Then
R is a factorable valuation domain by Theorem 2.4 and [1, Proposition
2.2]. Thus R is a DVR by [3, Corollary 6], that is, R is a Noetherian
valuation domain. Thus M is a Noetherian valuation module, i.e., M is
a DVM.

3. Euclidean-like characterizations

Let S (M)+ denote the set of all nonzero submodules of a multi-
plication module M . Then S (M)+ forms a semigroup with identity
M under submodule multiplication. For the definition of submodule
multiplication, see [7, pp. 572–573].
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Theorem 3.1. Let M be a faithful multiplication module over an
integral domain R. Then M is a CSM (resp., Dedekind module) if and
only if there exists a (length) function l : S (M)+ → N ∪ {0} such that
both of the following conditions hold.

(a) If A ⊆ B, then l(A) ≥ l(B) with l(A) = l(B) if and only if A = B.
(b) If A and B are nonzero submodules ofM such that A * B and B *

A, then there exist submodules I, J,K of M such that K = AI +
BJ , K is cyclic (resp., invertible), and l(K) < min{l(A), l(B)}.

Proof. If M is a CSM (resp., Dedekind module), then let l(L) be the
number of nonfactorable submodules in a factorization of L. This num-
ber is unique by Theorem 2.5, and so l is well-defined. Then condition
(a) is immediate. Condition (b) is achieved by letting K := A+B and
I = J := M .

Conversely, if l is given and A is a nonzero submodule of M , then
let a cyclic (resp., an invertible) submodule B of A be chosen such
that l(B) is a minimum. We show that A = B. Suppose that B is
a proper submodule of A and let α ∈ A \ B. Therefore, by condition
(a), B * Rα since l(B) ≤ l(Rα) by the minimality. Thus, by condition
(b), there exist submodules I, J,K of M such that K = IB + Jα(⊆ A),
K is cyclic (resp., invertible), and l(K) < min{l(B), l(Rα)} = l(B), a
contradiction. Hence, A = B is cyclic (resp., invertible).
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