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MULTIPLICATION MODULES
OVER PULLBACK RINGS (I)

SHAHABADDIN EBRAHIMI ATANI AND SANG CHEOL LEE

Abstract. First, we give a complete description of the multipli-
cation modules over local Dedekind domains. Second, if R is the
pullback ring of two local Dedekind domains over a common factor
field then we give a complete description of separated multiplication

modules over R.

0. Introduction

Throughout this paper all rings will be commutative rings with non-
zero identities and all modules will be unitary. Let R be a commutative
ring and M an R-module. Then M is called a multiplication module if
for each submodule N of M, N = IM for some ideal I of R. In this

case we can take
I=(N:gM)={re R:tM C N}.

Let v; : Ry » Rand vo : Ry — R be homomorphisms of two local
Dedekind domains R; onto a common field R. Denote the pullback

(1) R = {(r1,m2) € R1 ® Ry : v1(r1) = va(r2)}

by (R, = R <% Ry). Then R is a ring under coordinate-wise multipli-

cation. Denote the kernel of v; by P; for i = 1,2 and denote the kernel
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of the homomorphism v: R — R by P. Then P = P, & P, and

R:/P

1%

R
=

R/P

14

R,/ Py

Since P, P, = P, P; =0, R is not an integral domain. In particular, R is
a commutative Noetherian local ring with unique maximal ideal P. The
other prime ideals of R are easily seen to be P; (that is P; ¢ 0) and P,
(that is 0 @ P,). Furthermore, for ¢ # j, the sequence 0 —» P, —» R —
P; — 0 is an exact sequence of R-modules (see [6].)

An R-module S is called to be separated if there exists an R;-module
Si, 1 = 1,2, such that S is an R-submodule of S; @ S2. Equivalently, S
is separated if it is a pullback of an R;-module and an Rz-module and
then, using the same notation for pullbacks of modules as for those of

rings,

S = (S/P,S — S/PS « §/P,8)

[6, Corollary 3.3] and S < (S/P.S) @ (S/P1S). Also, S is separated if
and only if P;SN P,S =0 [6, Lemma 2.9].

A separated representation of an R-module M is an R-module epi-
morphism ¢ : S — M such that S is separated and such that, if ¢
admits a factorization ¢ : § 4§ » M with & separated, then f is
one-to-one. Assume that ¢ : S — M is a separated representation. If
M is finitely generated, so is S [6, Corollary 2.10]. An exact sequence
0— K — S — M — 0 of R-modules with S separated and K an R-
module is a separated representation of M if and only if P,SNK = 0 for
each i and K C PS [6, Proposition 2.3]. Every module has a separated

representation, which is unique up to isomorphism [6, Theorem 2.8].
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1. Multiplication modules over Dedekind domains

The purpose of this section is to give a complete description of local
multiplication modules over Dedekind domains.

Lemma 1.1. If M is a non-zero multiplication module over a quasi-

local ring R, then the R-module M is indecomposable.

Proof. Let R be a quasi-local ring with unique maximal ideal Q.
Assume that M = A ® B, where A and B are submodules of the R-
module M. Since M is a multiplication module, there exist ideals I and
J of R such that A=IM and B =JM.

Suppose that I # Rand J # R. Then I C Q and J C Q. This
implies that M = A+ B =IM +JM C QM, so M = QM. By [1,
Proposition 1], M = 0, a contradiction. Hence, either I = R or J = R.

IfI=R, then B=MNB=IMNB=ANB=0. Or, if J =R,
then A=ANM=AnNnJM =ANB=0.

Therefore, M is indecomposable. a

Compare Proposition 1.2 with {7, Theorem 2.8].

Proposition 1.2. If M is a non-zero finitely generated multiplica-
tion module over a commutative ring R, then the Rp-module Mp is an

indecomposable multiplication module for all prime/maximal ideals P
of R.

Proof. Let P be any prime/maximal ideal of R. Then by [1, Lemma
2], the Rp-module Mp is a multiplication module. Since Rp is a local
ring with unique maximal ideal PRp, it follows from Lemma 1.1 that
the Rp-module Mp is indecomposable. a

Lemma 1.3. If M is a multiplication module over a commutative
ring R, then Annp I = (AnngM :g I)M for any ideal I of R.
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Proof. Assume that M is a multiplication module over a commuta-
tive ring R. Let I be any ideal of R. Then AnnyJ = (Annpl :gp M)M.
Notice that

a € Annpl g M <= aM C Annpyl <= alM =0

< al C AnngM < a € AnngM :p I.

Then Annyl :g M = AnngM :r I. Hence, Anny I = (AnngM :p
I)M, as required. O

Let M be a multiplication module over a commutative domain R.
Then M is not necessarily faithful over R. The example of this is given

below.

Example 1.4. Let R be a local domain with unique maximal ideal
P #0and let M = R/P2?. Then M is a cyclic R-module and so it is a
multiplication module over R. However, AnngM = P? £0. O

Compare the following result with [5, Lemma 4.1].
Proposition 1.5. Let M be a faithful multiplication module over a
commutative domain R. Then the following are true:

(1) AnnpI = 0 for any non-zero ideal I of R.

(2) M is a torsion-free R-module.

(3) M can be regarded as a submodule of the localization M) at
the zero ideal (0), which is prime, of R.

Proof. (1) Assume that M is a faithful multiplication module over a

commutative domain R. Then for any non-zero ideal I of R,
(AnngM :g I) =0: I =0.

By Lemma 1.3, AnnyJ = (AnngM :g M =0M =0.
(2) Assume rm = 0, where 0 # r € R and m € M. Then by (1),

m € Annpr = 0. Hence, M is torsion-free.
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(3) Define a map ¢ : M — Mg by ¢(m) = m/1, where m € M.
Then it is clear that ¢ is an R-homomorphism. Assume that m/1 = 0,
where m € M. Then there exists an element s € R\(0) such that

sm = 0. By (2), m = 0. Hence, ¢ is a monomorphism. O

A Dedekind domain is a commutative domain with the property that
every non-zero fractional ideal is invertible. Every integral ideal of a
commutative domain is a fractional ideal. Let R be an integral domain.
Then it is well-known that the following are equivalent:

(1) R is a Dedekind domain.
(2) R is integrally closed and Noetherian, and every proper prime
ideal of R is maximal.

(3) Every proper ideal of R is uniquely a product of maximal ideals.

Lemma 1.6. Let M be a non-zero multiplication over a local Dedekind
domain with unique maximal ideal Q. Assume that M is faithful over
R. Then the following are true:

(1) There is an element ¢ in M uniquely determined by units of R
such that M = Rx. Further, M = R.
(2) Every non-zero submodule of M is of the form Q"z, where n is

a non-negative integer.

Proof. (1) ((Existence)) By (1, Proposition 4], M is cyclic. There
exists an element z € M such that M = Rz. Further, z is non-zero.

((Uniqueness)) Assume that there exist elements z,y € M such that
M = Rz and M = Ry. Then Rz = Ry. z € Ry, so there exists an
element a € R such that £ = ay. Similarly, there exists an element
b € R such that y = bzx. (1 — ab)z = 0. By Proposition 1.5 (2),
1 — ab = 0. Hence, a and b are units of R. Further, we have M = Rz =
R /Anng(z) = R/Anng(M) = R/0 = R.

(2) Let N be a non-zero submodule of M. Then there exists a non-
zero ideal I of R such that N = IM. Since R is local Dedekind with
maximal ideal Q, there is a non-negative integer n such that I = Q™.
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Hence
N=IM=Q"Rz =Q"z.

Conversely, suppose that there is a non-negative integer n such that
Q"z = 0. Then z € Annp(Q™) = 0 by Proposition 1.5 (1). This
contradiction shows that for every non-negative integer n, Q" is a non-

zero submodule of M. O

Theorem 1.7. Let M be a non-zero multiplication module over a
local Dedekind domain with unique maximal ideal (). Then the only

one of the following two statements holds:

(1) There is a positive integer n such that M 2 R /Q™.
(2) M = R.

Proof. Assume that M is a non-zero multiplication module over a
local Dedekind domain with unique maximal ideal Q). Then M is a non-
zero multiplication module over the local ring R, so by [1, Proposition
4], there exists an element z € M such that M = Rz.

(1) Assume that Anng(M) # 0. Then there exists a non-zero element
r € R such that rM = 0. So, rr = 0. This implies Anngz # 0. Since
R is local Dedekind with maximal @), there is a positive integer n such
that Anngr = Q™. Hence, M = Rz = R /Anngz = R/Q" .

(2) Or, assume that Anng(M) =0. By Lemma 1.6 (1), M = R.

2. The Separated Case

The aim of this section is to give a complete description of the sepa-
rated multiplication R-modules where R is the pullback ring as described
in (1)

Lemma 2.1. Let R and R’ be any commutative rings, f : R — R’ a
ring homomorphism, and M an R'-module. If f is surjective and M is

a multiplication R'-module, then M is a multiplication R-module.
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Proof. Since f is a surjective homomorphism, we can give M an
R-module structure. Let N be any R-submodule of M. Then N is
an R’-submodule of M. So, N = I'M for some ideal I' of R'. Set
I = f~1(I'). Then [ is an ideal of R and

F=fI))=I'nf(R)=I'NR =T
Hence, IM = f(I)M = I'M = N, as required. O

Let R be the pullback ring as described in (1) and let S = (S; — S «
S,) be a separated R-module. Suppose that 7; is the projection map of
R onto R;. If for each i € {1,2}, S; is a multiplication R;-module, then

it follows from Lemma 2.1 that each S; is a multiplication R-module.

Lemma 2.2. Let R be a commutative ring and I an ideal of R. Let
M be a multiplication R-module and let N be an R-submodule of M
such that I C (N :r M). Then M/N is a multiplication R/I-module.

Proof. Let L be any submodule of M such that N C L. Then
(L :r M)M = L since M is a multiplication R-module.

Clearly, (L/N :gy1 M/N)M/N C L/N. Conversely, let | be any
element of L. Then there exist elements ai,---,a, € L :g M and
elements =1, - ,2, € M such that | = a1z, + ---anz,. So, a1 +
I,.--,apn+I€R/Iand z;+ N, -+ ,z, + N € M/N. Further, for each
ie{l,---,n}, (a; + )M/N = (a;M + N)/N C (L+ N)/N = L/N,
and so a; + I € L/N :g/; M/N. This implies

I+ N=aiz1+ - +a,Zn+ N
=(a1+)(z1+N)+- +(an+I)(zn + N)

Hence, L/N C (L/N :gyy M/N)M/N. Thus, L/N = (L/N :g/1
M/NYM/N.
Therefore, M/N is a multiplication R/I-module. O
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Corollary 2.3. If M is a multiplication module over a commutative
ring R, then for every submodule N of M, the R-module M/N is a

multiplication module.

Proof. Take I =0 in Lemma 2.2. O

Let N be an R-submodule of M. Then N is said to be pure in M
if any finite system of equations over N which is solvable in M is also
solvable in N. It is well-known that every direct summand of a module
over a commutative ring is pure.

We can use Corollary 2.3 to see that every direct summand of a mul-
tiplication module is also a multiplication module. This can be proved
alternatively by making use of the notion of a pure submodule of a

module as follows.

Lemma 2.4. Let M be a multiplication module over a commutative

ring R. Then the following are true.
(1) If N is a pure submodule of M, then N is a multiplication mod-

ule.
(2) Every direct summand of a multiplication module over a com-

mutative ring is also a multiplication module.

Proof. (1) Let K be any submodule of N. Then K is a submodule
of M, so there exists an ideal I of R such that K = IM. Clearly,
INCNNIM.

Conversely, let € NNIM. Then there are elements a1,a2, - ,a, €
I and elements 1,23, - , 2, € M such that ¢ = a1z, +asx2+- - -+a,z,.
Since N is pure, we must have z1, %9, -,z € N. Hence,

T =a12y+ax2+---+a,z. € IN.
This shows that N N IM C IN. Therefore,

IN=NNIM=NnNnK =K.
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Consequently, N is a multiplication module over E.

(2) Let N be any direct summand of M. Then as we have already
known, N is pure in M. Therefore, by (1), N is a multiplication mod-
ule. a

A module N is said to be pure-injective if any (infinite) system of
equations (allowing infinitely many indeterminates) in N which is finitely
solvable in N is solvable in N (see [7, Theorem 2.8, p.28]).

Theorem 2.5. Let M be a non-zero multiplication module over a
Dedekind domain R. If M is not faithful over R, then M is pure-

injective.

Proof. By [2, Proposition 2.10], M is Noetherian. Since Anng(M) is
a proper ideal of a Dedekind domain R, there are finitely many maximal
ideals Q1,Q2, -+ ,Qn of R such that Anng(M) = @1Q2 - Qn. So,

Q1Q2 - QnM = Anng(M)M = 0.

By [8, Theorem 7.30], M is an Artinian module over R. Since M satisfies
the a.c.c. and the d.c.c., M has a finite length. By [3, p.4064], M is

pure-injective. 0

Lemma 2.6. Let R be the pullback ring as described in (1) and M
a non-zero multiplication module over R. Then the following are true:
(1) If (P, 0+ Anng(M)) N (0@ P; + Anng(M)) = 0, then M is
separated.
(2) If either Anng(M) C Py ® 0 or Anng(M) C 0@ P>, then M is
separated.
(3) If M is faithful over R, then it is separated.

Proof. Let M be a non-zero multiplication module over the ring R.
Then by [5, Corollary 1.7],

(PL®0)MN (08 P)M = ((Pi®0+Anng(M))N (08 P, +Anng(M))) M.
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(1) Assume that (P; @ 0 + Anng(M)) N (0 ® P; + Anng(M)) = 0.
Then

(P1@0)MQ(O@P2)M = ((P1EB(H‘AIII]R(M))ﬂ(O@P2+AnnR(M)))M =0.

Hence, by [6, Lemma 2.9], M is separated.
(2) We may assume that Anng(M) C P; & 0 since the proof of the
other is similar. Then by the Modular Law,

(Pr®0)MNO0® P)M = ((PL®0+ Anng(M))N (0® P, + Anng(M)))M
=(((PL®0+ Anng(M))N (0 P)) + Anng(M))M
=((PAA®0+Anng(M))N (0@ P,))M

(PLe0)N (08 P))M

M

i
.o o —~~

Hence, by [6, Lemma 2.9] again, M is separated.
(3) If M is faithful, then it follows from (1) or (2) that M is sepa-
rated. 0

Let R be the pullback ring of two local Dedekind domains R;, Rj.
Assume that S is a separated R-module of an Ri-module S; and an Ra-
module Sy. If for each i € {1,2}, S; is a non-zero faithful multiplication
module over R;, then by Lemma 2.6, for each ¢ € {1, 2}, S; is separated.
Every non-zero faithful multiplication module over R is also separated

since R is a local ring (see Section 0.)

Lemma 2.7. Let R be the pullback ring of two local Dedekind do-
mains Ry, Ry with maximal ideals P,, P,. Assume that S is a separated
R-module of an Ri-module S, and an Ry-module Sy. If S is a non-zero
multiplication module over R, then for each i € {1,2}, S; is a non-zero
multiplication module over R;. The converse holds provided that either
PSS, =0o0r P,S, =0.
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Proof. Suppose that S is a non-zero multiplication module over R.
0 P)S C Sand 0 P, C (0 P)S :g S). By Lemma 2.2,

S /(0@ P>)S is a multiplication R /0 @ P;-module. Further,
S1 gS/(OEBPQ)S and Ry gR/O@Pg .

Hence, $; is a multiplication module over R;. By a similar proof, we
can show that S5 is a multiplication module over R,.

Conversely, we may assume that P»S; = 0 since the proof of the
other is similar. Assume that S; is a non-zero multiplication module
over R; and that S5 is a non-zero multiplication module over R;. By [1,
Proposition 4|, there exists an element s; € S; and an element s; € S,
such that §; = R;s; and S; = Rys;. There exists an element s), € S
such that fi(s1) = fa(sy). Then (s1,s5) € S. Hence, R(s1,s5) C S.
Conversely, let (u,v) € S. Then there exists an element r; € R; and
an element ro € Ry such that u = r18; and v = r98,. There exists an
element m, € Ry such that vi(r1) = va(r}). Then (ry,r}) € R. Since
(u,v) € S, we have

fa(r3s3) = va(r3) fa(s3) = vi(r1) fi(s1) = fi(ris1) = fi(u) = fa(v).
This implies v — 1455 € Ker(fy) = P,S; = 0. So, v = rhs. Thus,
(u,v) = (r151,7383) = (r1,73)(s1,55) € R(s1, 83)-
This shows that S C R(s1,s5). Therefore, S = R(s1, s5). By [1, Propo-

sition 4] again, S is a multiplication module over R. O

Let R be the pullback ring as described in (1). Here is a list of inde-
composable separated R-modules (see [3, Lemma 2.8]): for all positive
integers n, m, S = (Ry /Pl — R «— Ry/P).

Proposition 2.8. Let R be the pullback ring as described in (1).
Then for all positive integers n,m such that either n or m is 1, S =
(Ry /P! — R« Ry /PJ*) is a multiplication R-module.
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Proof. Assume that either n or mis 1. If n = 1, then P (R, /P]*) =
0. Or, if m = 1, then Py(Ry /PJ*) = 0. Since R; is a multiplication
module over Ry, it follows from Corollary 2.3 that the R;-module R, /Pl
is a multiplication module. Similarly, the Re-module Ry/P;* is a mul-
tiplication module. Hence, by Lemma 2.7, S is a multiplication module
over R. O

Compare Theorem 2.9 with [4, Proposition 2.3].

Theorem 2.9. Let R be the pullback ring as described in (1). As-
sume that S Iis a non-zero faithful multiplication module over R. Then

the following are true:

(1) S is indecomposable.
(2) S is isomorphic to one of the following:
(a) R.
(b) (R — § — Ry /PE).
(c) (Ri/P[* = S < Ry).
(d) (Ry /P[" — S — Ry [ Py).

Here, m and k are positive integers.

Proof. (1) Since S is a non-zero multiplication module over a local
ring R, it follows from Lemma 1.1 that S is indecomposable.

(2) By Lemma 2.6, S is separated. There exists an R;-module S;
and Rp-module Sy such that S = (S; — S « S;). S is a non-zero
multiplication module over R. By Lemma 2.7, S; is a multiplication
module over R; for each ¢ € {1,2}. By Theorem 1.7, §; & R; or
Sy = Ry /P™ for some positive integer m, and Sz = Ry or S; = R» / sz

for some positive integer k. Hence, the results follows. O
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