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RINGS OF COPURE PROJECTIVE DIMENSION ONE

Tao Xiong

Abstract. In this paper, in terms of the notions of strongly copure pro-
jective modules and the copure projective dimension cpD(R) of a ring R

were defined in [12], we show that a domain R has cpD(R) ≤ 1 if and
only if R is a Gorenstein Dedekind domain.

1. Introduction

Throughout this paper, R is an associative ring with identity and all mod-
ules are left R-modules unless otherwise stated. For an R-module M , fdRM

(resp. idRM) stands for the flat (resp. injective) dimension of M . We also use
w.gl.dim(R) (resp. l.gl.dim(R)) to denote the weak global (resp. left global) di-
mension of R, and use Fn to denote the class of R-modules with flat dimension
at most a fixed nonnegative integer n. And, for a commutative ring R, we also
denote by Max(R) the set of maximal ideals.

In [12], Fu et al. introduced the concepts of copure projective modules,
n-copure projective modules, strongly copure projective modules, and the co-
pure projective dimension. A left R-module M is called n-copure projective if
Ext1R(M,N) = 0 for any R-module N ∈ Fn. 0-copure projective modules are
said simply to copure projective. M is said to be strongly copure projective
if Exti+1

R (M,F ) = 0 for any flat R-module F , and all i ≥ 0. The copure
projective dimension cpdR(M) of an R-module M is defined to be the smallest

integer n ≥ 0 such that Extn+i
R (M,F ) = 0 for any flat left R-module F and

for any i ≥ 0. Of course, if no such n exists, write cpdR(M) = ∞. Thus
cpdR(M) ≤ m is equivalent to M has a strongly copure projective resolution

0 −→ Pm −→ Pm−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0,
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where each Pi is strongly copure projective. The copure projective dimension
of a ring R is defined as

cpD(R) = sup{ cpdR(M) |M is an R-module }.
In this paper, we characterize some classes of rings in terms of copure pro-

jective modules.

2. QF rings, IF rings and semihereditary rings

It was shown in [12, Remark 4.2 & Proposition 3.12] that a ring R is a QF
ring if and only if cpD(R) = 0, and if and only if every right R-module is copure
projective. Recall that an R-module D is h-divisible if it is an epic image of an
injective R-module. As in [4], we call a ring R a right IF ring if every injective
right R-module is flat. Now, we characterize QF rings and IF rings in terms of
h-divisible modules and copure projective modules.

Proposition 2.1. The following statements are equivalent for a ring R:
(1) R is a right IF ring.

(2) R is a left coherent ring, and every finitely presented left R-module is

copure projective.

(3) R is a left coherent ring, and every finitely presented left R-module is

n-copure projective.

(4) R is a left coherent ring, and every finitely presented left R-module is

strongly copure projective.

Proof. (1)⇒(4). If R is a right IF ring, by [4, Theorem 2], R is a left coherent.
Now, let M be a finitely presented R-module. By [16, Theorem 3.10], R is FP-
injective, and so every finitely generated free R-module is FP-injective. Thus
for any flat R-module N , then N = lim

−→
Fi by [20, Theorem 5.40], where each

Fi is finitely generated free R-module. By [22, Theorem 3.2], we have

ExtnR(M,N) = ExtnR(M, lim
−→

Fi) ∼= lim
−→

ExtnR(M,Fi) = 0,

where n ≥ 1. Hence M is strongly copure projective.
(4)⇒(2). Trivially.
(2)⇒(1). Let M be a finitely presented R-module. By (2), M is copure

projective, then Ext1R(M,R) = 0. Thus R is FP-injective. Since R is a left
coherent ring, R is a right IF ring by [16, Theorem 3.10].

(1)⇔(3). By [13, Theorem 2.13]. �

Proposition 2.2. The following statements are equivalent for a ring R:
(1) R is a QF ring.

(2) Every h-divisible module is copure projective.

(3) R is a left Neotherian ring and every finitely presented left R-module is

copure projective.
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Proof. (1)⇒(2) and (1)⇒(3) are trivial.
(2)⇒(1). For any flat R-module N , pick an exact sequence 0 → N →

E → E/N → 0 with E injective. By (2), E/N is copure projective. Thus
Ext1R(E/N,N) = 0, and 0 → N → E → E/N → 0 is split. Then N is
injective, and cpD(R) = 0.

(3)⇒(1). It follows directly from Proposition 2.1. �

Now, we study the localization of commutative QF rings. As in [8], Enochs
and Jenda introduce the concepts of copure flat modules and strongly copure
flat modules. For a left R-module M , M is called copure flat if TorR1 (E,M) = 0
for any injective right R-module E, and M is called strongly copure flat if
TorRi (E,M) = 0 for any injective right R-module E and for all i ≥ 1. In
the paper [8] the author defined the copure flat dimension cfdRM of an R-

module M to be the largest integer n ≥ 0 such that TorRn (E,M) 6= 0 for some
injective right R-module E. Of course, if no such n exists, write cfdR(M) = ∞.
Thus cfdRM = 0 if and only if M is strongly copure flat. As in [11, Lemma
3.2], it was shown that for a left R-module M , cfdRM ≤ m if and only if

TorRm+i(E,M) = 0 for any injective right R-module E.

Theorem 2.3. Let R be a commutative Noetherian ring. Then

cpD(R) = sup{cpD(Rm) | m ∈ Max(R)}.
Proof. Let M be a finitely presented R-module. By [12, Proposition 3.7],
cpdRM ≥ cfdRM . Now, set k = cfdRM . Then there exists an exact se-
quence 0 → Pk → Pk−1 → · · · → P1 → P0 → M → 0, where P0, P1, . . . , Pk−1

is finitely generated projective and Pk is strongly flat. Since R is Noetherian,
Pk is finitely presented. For any flat R-module F , F+ is injective by [9, The-

orem 3.2.10]. Then ExtiR(Pk, F )+ ∼= TorRi (Pk, F
+) = 0 by [14, Lemma 1.2.11].

It follows that Pk is strongly copure projective. Hence cpdRM = cfdRM .
Now, set n = cfdRM . By [11, Lemma 3.2], there exists an injective R-

module E such that TorRm(E,M) 6= 0. For some m ∈ Max(R), TorRm

m (Em,Mm)
∼= TorRm(E,M)m 6= 0. Since Em is an injective Rm-module by [9, Theorem
3.2.16], sup{cfdRm

Mm} ≥ cfdRM .
Without loss of generality we can assume k := cpD(R) < ∞. Let M be an

Rm-module. Then we have an exact sequence 0 → Pk → Pk−1 → · · · → P1 →
P0 → M → 0, where each Pi is strongly copure projective over R. Thus the
sequence 0 → (Pk)m → (Pk−1)m → · · · → (P1)m → (P0)m → M → 0 is exact.
Let N be a flat Rm-module. Then we have that k = fdRN < ∞ by hypothesis.
Let 0 → N → E → C → 0 be an exact sequence with E injective over Rm.
Then we have the following commutative diagram with exact rows

HomRm
((Pi)m, E) //

∼=
��

HomRm
((Pi)m, C) //

∼=
��

Ext1Rm

((Pi)m, N) //

θ
��

0

HomR(Pi, E) // HomR(Pi, C)
µ

// Ext1R(Pi, N) // X
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where X is a cokernel of µ. By the Adiont Isomorphic Theorem we have the
two vertical arrows on the left are isomorphic. Hence θ is a monomorphism.
Let us consider the exact sequence 0 → K → F → N → 0 with F flat and
fdRK = k−1 < ∞. Then Ext1R(Pi, N) ∼= Ext2R(Pi,K). Hence Ext1R(Pi, N) = 0
by induction on k. Then Ext1Rm

((Pi)m, N) = 0.
Let 0 → A → F → Pi → 0 be an exact sequence, where F is a free R-module.

Thus A is also strongly copure projective over R. Since TorR1 (Rm, Pi) =

0, the sequence 0 = TorR1 (Rm, Pi) → Am → Fm → (Pi)m → 0 is exact. Then

Extk+1
Rm

((Pi)m, N) ∼= ExtkRm

(Am, N) and Extk+1
R (Pi, N) ∼= ExtkR(A,N). By di-

mension shifting we have ExtkRm

((Pi)m, N) = 0 for all k ≥ 1. Hence (Pi)m is
a strongly copure projective Rm-modules. Thus we get cpd(Rm) ≤ k. Hence
cpD(R) = sup{cpD(Rm) | m ∈ Max(R)}. �

By Theorem 2.3 and [12, Remark 4.2(2)], we have the following proposition.

Proposition 2.4. Let R be a commutative Noetherian ring. Then R is a QF
ring if and only if Rm is a QF ring for every maximal ideal m of R.

A ring R is said to be left semihereditary if its finitely generated left ideals
are projective. It was shown in [7, Theorem 4.5] that a left coherent ring R is
semihereditary if and only if every finitely presented copure flat right R-module
M is flat. Now, we have:

Proposition 2.5. The following statements are equivalent for a coherent ring

R:
(1) R is left semihereditary.

(2) Every copure projective right R-module M is flat.

(3) Every finitely presented copure projective right R-module M is projective.

Proof. (1)⇒(2). Let M be a copure projective right R-module. By [12, Propo-
sition(1) 3.7], M is copure flat. Hence M is flat by [7, Theorem 4.5].

(2)⇒(3). Let M be a finitely presented copure projective right R-module.
By (2), M is flat. Since M is finitely presented, M is projective.

(3)⇒(1). Let M be a finitely presented copure flat right R-module. For
any flat right R-module F , F+ is injective by [9, Theorem 3.2.10]. Then

Ext1R(M,F )+ ∼= TorR1 (M,F+) = 0 by [14, Lemma 1.2.11]. Hence M is copure
projective. By (3), M is projective. Thus, it follows from [7, Theorem 4.5] that
R is left semihereditary. �

3. CPH rings and Gorenstein Dedekind domains

For any homological dimension, ones often discuss the rings of this dimension
at most one. So it is natural to ask the structure of rings that every submodule
of a strongly copure projective module is strongly copure projective, that is, of
rings with cpD(R)≤1. Now, let us call provisionally such a ringR strongly CPH
(Copure-Projective-Hereditary) ring if every submodule of a strongly copure
projective module is strongly copure projective. In [12] it is proved that if R is
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right coherent and left Noetherian, then R is a strongly CPH ring if and only
if cpD(R)≤1. 1n 2013, Xiong et al. [23] introduced the notion of CPH rings. A
ring R is called a CPH ring if every submodule of a copure projective module
is copure projective. In 2015 Gao [13] also introduced the notion of relative
hereditary rings for which every submodule of a n-copure projective module is
n-copure projective. Naturally, we have the following implications:

strongly CPH rings =⇒ relative hereditary rings =⇒ CPH rings.

Next we show that these implications can be reversed, that is, a ring R is
strongly CPH ring if and only if R is a CPH ring.

Theorem 3.1. The following statements are equivalent for a ring R:
(1) l.cpD(R) ≤ 1, that is, R is a strongly CPH ring.

(2) R is a left CPH ring.

(3) R is a left relative hereditary ring.

(4) idRF ≤ 1 for any R-modules F with fdRF < ∞.

Proof. (1)⇒(2). Let M be a copure projective left R-module and let N be
a submodule of M . Then 0 → N → M → M/N → 0 is exact. For any
flat left R-module F , idRF ≤ 1 by [12, Theorem 4.11]. Consider the exact
sequence 0 = Ext1R(M,F ) → Ext1R(N,F ) → Ext2R(M,F ) = 0. Then we get
Ext1R(N,F ) = 0. Hence N is copure projective.

(2)⇒(1). Let F be a flat left R-module. For any left R-module X , there
exists an exact sequence 0 → K → P → X → 0 with P projective andK copure
projective by (2). Since 0 = Ext1R(K,F ) → Ext2R(X,F ) → Ext2R(P, F ) = 0 is
exact, we get Ext2R(X,F ) = 0. Hence idRF ≤ 1 and l.cpD(R) ≤ 1.

(1)⇒(3). Let M be a n-copure projective left R-module and let N be a
submodule of M . Then 0 → N → M → M/N → 0 is exact. For any left
R-module F with fdRF ≤ n, then there exists an exact sequence 0 → Fn →
Fn−1 → · · · → F1 → F0 → F → 0 with each Fi flat. Let I be a left ideal of R.
By [12, Corollary 4.12], cpdR(R/I) ≤ 1, and hence Ext2R(R/I, Fi) = 0. Thus
idRFi ≤ 1. Note K0 = F , K1 = ker(F0 → F ), and Ki = ker(Fi−1 → Fi−2)
for i ≥ 2. Consider the exact sequence 0 → Fn → Fn−1 → Kn−1 → 0 and
let X be a R-module. Then we can obtain idRKn−1 ≤ 1 from the sequence
0 = Ext2R(X,Fn−1) → Ext2R(X,Kn−1) → Ext3R(X,Fn) = 0. By the same way,
we can get idRF ≤ 1. By proof of (1)⇒(2), we get Ext1R(N,F ) = 0. Hence N

is n-copure projective.
(3)⇒(4). Let N be an R-module with k = fdRN < ∞. Without loss of

generality we can assume k := 2. Let I be any ideal of R. By (3), I is 2-
copure projective. Since 0 = Ext1R(I,N) → Ext2R(R/I,N) → Ext2R(R,N) = 0
is exact, we have Ext2R(R/I,N) = 0. Hence idRF ≤ 1.

(4)⇒(1). By [12, Theorem 4.11]. �

Let us call an R-module M ∞-copure projective if Ext1R(M,N) = 0 for any
R-module N with fdRN < ∞; and a ring R ∞-CPH ring if the submodule of a
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∞-copure projective R-module is also ∞-copure projective. By Theorem 3.1,
we have

strongly CPH rings = ∞-CPH rings = relative hereditary rings = CPH rings.

Example 3.2. Let R be a regular local ring with Krull dimension 2. Then
T = R/aR is a CPH ring, where a is an element of R that is neither a non-
zero-divisor nor a unit.

In [2], Bass introduced the finitistic projective dimension of a ring R as

l.FPD(R) = sup{ pdRM |M is a left R-module with pdRM < ∞}.
Theorem 3.3 ([12, Proposition 4.3]). Let R be a left CPH ring. Then

l.FPD(R) ≤ 1.

Example 3.4. Now we give an example of a ring R with l.FPD(R) ≤ 1 which
is not CPH. Let L be a field and F an extension field of L with [F : L] = ∞.
Construct R = L+ xF [x]. Then R is an almost perfect domain by [21]. Hence
FPD(R) = 1 by [1, Proposition 3.2]. Because R is not Noetherian, R is not
CPH.

Now we are in a position to discuss the relations between the class of left
CPH rings and the class of left hereditary rings. By Theorem 3.1, a CPH ring
is not in general a (left) hereditary ring.

Theorem 3.5. Let R be a left CPH ring. Then either l.gl.dim(R) ≤ 1 or

w.gl.dim(R) = ∞.

Proof. Assume that w.gl.dim(R) < ∞. Let F be a projective R-module and M

a submodule of F . By hypothesis,M is copure projective with k := fdRM < ∞.
We will show k = 0. Assume k > 0. Let 0 → Pk → Pk−1 → · · · → P1 → P0 →
M → 0 be an exact sequence, where P0, P1, . . . , Pk−1 are projective. Thus Pk is
flat. Since R is a CPH ring, all syzygies in this long exact sequence are copure
projective. Clearly, fdRPk ≤ 1. Consider the exact sequence 0 → Fk1 → Fk0 →
Pk → 0 with Fk0 free and Fk1 flat. Hence the exact sequence is split and Pk is
projective, whence fdRM ≤ k − 1, a contradiction. Thus k = 0, and hence M

is projective, which implies that R is hereditary. �

Corollary 3.6. Let R be a CPH ring. Then R is hereditary if and only if

every copure projective left R-module is projective.

Proof. Assume that R is hereditary. Let C be a copure projective module.
Pick an exact sequence 0 → A → P → C → 0, where P is projective. By
Theorem 3.1, A is strongly copure projective. By [12, Proposition 3.5], C is
strongly copure projective. By hypothesis, fdRC ≤ 1. By [12, Proposition 3.4],
C is projective. Conversely, assume that every copure projective left R-module
is projective, let 0 → N → P → P/N → 0 be an exact sequence with N being
a submodule of a projective module P . By hypothesis, N is projective. Hence
R is hereditary. �
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Example 3.7. We give another example of a CPH ring without being heredi-
tary. In fact, construct R = Q[x, y]/(x2+2y2). Since x2+2y2 is an irreducible
polynomial, we have that R is a CPH domain. Noting that R is not integrally
closed, we have gl.dim(R) = ∞.

Let x be an indeterminate over R. Now, we raise a question that if R is a
QF ring, then whether R[x] is a CPH ring.

Theorem 3.8. The following statements are equivalent for a ring R:
(1) R is a QF ring.

(2) For any indeterminate x over R, R[x] is a CPH ring.

Proof. (1)⇒(2). Equivalently, we prove that cpD(R[x]) = cpD(R) + 1. First,
for an R-module M , we prove that cpdR[x](M [x]) = cpdR(M). Let m be
a nonnegative integer. If cpdR(M) ≤ m, then there is an exact sequence
0 → Pm → Pm−1 → · · · → P1 → P0 → M → 0, where every Pi is a strongly
copure projective R-module. Thus 0 → Pm[x] → Pm−1[x] → · · · → P1[x] →
P0[x] → M [x] → 0 is exact. Let N be a flat R[x]-module. Then we have that
N is a flat R-module. Let 0 → N → E → C → 0 be an exact sequence where E
is an injective R[x]-module. Then we have the following commutative diagram
with exact rows:

HomR[x](Pi[x], E) //

∼=
��

HomR[x](Pi[x], C) //

∼=
��

Ext1R[x](Pi[x], N) //

θ
��

0

HomR(Pi, E) // HomR(Pi, C)
α

// Ext1R(Pi, N) // cokα

By the Adiont Isomorphic Theorem we have the two vertical arrows on the
left are isomorphic. Hence θ is a monomorphism. Consider the exact se-
quence 0 → K → F → N → 0 with F flat and fdRK = k − 1 < ∞. Then
Ext1R(Pi, N) ∼= Ext2R(Pi,K). Hence Ext1R(Pi, N) = 0 by induction on k. Then
Ext1R[x](Pi[x], N) = 0. Let k ≥ 0. Let 0 → A → F → Pi → 0 be an exact se-
quence, where F is a free R-module. Thus A is also strongly copure projective
over R. Then the sequence 0 = TorR1 (R[x], Pi) → A[x] → F [x] → Pi[x] → 0 is

exact, and Extk+1
R[x](Pi[x], N) ∼= ExtkR[x](A[x], N), Extk+1

R (Pi, N) ∼= ExtkR(A,N).

By dimension shifting, ExtkR[x](Pi[x], N) = 0 for all k ≥ 1. Hence Pi[x] is a

strongly copure projective R[x]-module. Hence cpdR[x](M [x]) ≤ m. On the
other hand, let cpdR[x](M [x]) ≤ m. Then there is an exact sequence

0 → Fm → Fm−1 → · · · → F1 → F0 → M [x] → 0,

where F0, F1, . . . , Fm are strongly copure projective R[x]-modules. Since x is
certainly a non-zero-divisor of M [x], we have

0 → Fm/xFm → Fm−1/xFm−1 → · · · → F1/xF1 → F0/xF0 → M → 0

is exact. Notice that R ∼= R[x]/xR[x]. Let N be a flat R-module. Let
0 → N → E → C → 0 be an exact sequence where E is an injective R-
module. Then we have the following commutative diagram with exact rows:
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HomR(Fi/xFi, E) //

∼=
��

HomR(Fi/xFi, C) //

∼=
��

Ext1R(Fi/xFi, N) //

α
��

0

HomR(Fi, E) // HomR(Fi, C)
ξ

// Ext1R(Fi, N) // cokξ

Hence α is a monomorphism. Consider the exact sequence 0 → K → F → N →
0 with K,F flat. Then Ext1R[x](Fi, N) ∼= Ext2R[x](Fi,K). Hence Ext1R[x](Fi, N)
= 0. Then

Ext1R(Fi/xFi, N) = 0.

Let k ≥ 0. Let 0 → A → F → Fi → 0 be an exact sequence, where F is a
free R[x]-module. Thus A is also strongly copure projective over R[x]. Since
x is a non-zero-divisor of Fi, the sequence 0 → A/aA → F/aF → Fi/xFi → 0

is exact. Then Extk+1
R (Fi/xFi, N) ∼= ExtkR(A/xA,N) and Extk+1

R (Fi, N) ∼=
ExtkR(A,N). We have ExtkR(Fi/xFi, N) = 0 for all k ≥ 1 by dimension shift-
ing. Hence Fi/xFi is a strongly copure projective R-modules. Thus we get
cpdR[x](M [x]) = cpdR(M).

Now, we can assume m := cpD(R) < ∞. There is an R-module M 6= 0 with
cpdR(M) = m. Let N be any flat R[x]-module. Certainly, x is a non-zero-
divisor of N . By Rees Theorem, Extm+2

R[x] (M,N) ∼= Extm+1
R (M,N/xN) = 0.

Thus cpdR[x](M) ≤ m + 1. Since cpdR(M) = m, there is a flat R-module
N with ExtmR (M,N) 6= 0. Let 0 → A → F/xF → N → 0 be exact, where
F is a free R-module. Thus A is also a flat R-module. Hence the exact se-
quence ExtmR (M,F/xF ) → ExtmR (M,N) → Extm+1

R (M,A) = 0, which implies

ExtmR[x](M,F/xF ) 6= 0. By using Rees Theorem again we get Extm+1
R[x] (M,F ) 6=

0. Therefore, cpdR[x](M) ≥ m + 1. Hence cpdR[x](M) = m + 1. Therefore,
cpD(R[x]) ≥ m+ 1.

Let A be an R[x]-module. Consider the canonical exact R[x]-sequence 0 −→
A[x] −→ A[x] −→ A −→ 0. By [12, Proposition 4.10(3)], we have cpdR[x](A) ≤
cpdR[x](A[x]) + 1 = cpdR(A) + 1 ≤ m + 1. Consequently, cpD(R[x]) ≤ m+ 1.
Thus we are done.

(2)⇒(1). Set m = cpD(R). There is an R-module M 6= 0 with cpdRM = m,
and a flat R-module N with ExtmR (M,N) 6= 0. Let 0 → A → F/xF → N → 0
be exact, where F is a free R[x]-module. Thus A is also a flat R-module. Hence
we have the exact sequence

ExtmR (M,F/xF ) → ExtmR (M,N) → Extm+1
R (M,A) = 0,

which implies ExtmR (M,F/xF ) 6= 0. By using Rees Theorem again we get
Extm+1

R[x] (M,F ) 6= 0. Therefore, 1 ≥ cpdR[x]M ≥ m+ 1 by Theorem 3.1. Hence

m = 0. Therefore, cpD(R) = 0. Hence by [12, Remark 4.2], R is a QF ring. �

Now, we study the CPH domains.

Theorem 3.9. Let R be a CPH domain. Then R is a Noetherian ring of Krull

dimension dim(R) ≤ 1.
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Proof. Let I 6= 0 be any finitely generated ideal of R. For any 0 6= a ∈ I. Set
T = R/aR and let M be a T -module with k := cpdT (M). Let P = F/aF

is a free T -module, where F is a free R-module. Then by Rees Theorem,
ExtkT (M,P ) ∼= Extk+1

R (M,F ) = 0 for all k ≥ 1. Therefore, ExtkT (M,P ) = 0 for
all projective T -modules P and for k ≥ 1. Now let N be a flat T -module. By
Theorem 3.3, FPD(R) ≤ 1. Let M be a T -module with k := pdT (M) < ∞.
Then, by [19, Theorem 9.32], pdR(M) = k + 1 ≤ 1. Thus k = 0, whence
FPD(T ) = 0. By Jensen Lemma [17], s := pdT (N) < ∞, whence s = 0.

Thus N is a projective T -module. Particularly, ExtkT (M,N) = 0 for all k ≥ 0.
Therefore, cpdT (M) = 0, whence cpD(T ) = 0. By [12, Remark 4.2], T is a
QF ring. Then T is an IF ring. By [4, Theorem 2], T is coherent, and so
I/(u) is finitely presented over R/(u). Then there exist a finitely generated
free R-module F and a finitely generated R/(u)-module A such that 0 → A →
F/IF → I/(u) → 0 is an R/(u)-exact sequence. Then we have the following
commutative diagram with exact rows:

0

��

0

��

IF

��

IF

��

0 // N //

��

F //

��

I/(u) // 0

0 // A //

��

F/IF //

��

I/(u) // 0

0 0

Notice that IF is a finitely generated R-module, so is N . Hence I/(u) is
finitely presented over R. Since 0 → (u) → I → I/(u) → 0 is exact, I is
finitely presented. Consequently, R is coherent. Let P be a nonzero prime
ideal of R. Pick 0 6= a ∈ P . Set m = cpD(T = R/aR). By the proof of
Theorem 3.8, we get cpD(T ) = 0. Hence by [12, Remark 4.2], T is a QF ring.
Since a QF ring is Artinian, P/(a) is finitely generated. Consequently, P is
finitely generated, and hence R is Noetherian. Now dim(R) = FPD(R) ≤ 1 is
obtained by [18] and Theorem 3.3. �

Example 3.10. CPH rings are not necessarily Noetherian. For example, let R
be an umbrella ring with gl.dim(R) ≤ 2 and let P be the maximum non-finitely
generated prime ideal of R. Let a ∈ P but a 6= 0. Then R/(a) is a coherent
CPH ring but not Noetherian.

Example 3.11. A coherent domain is not necessarily CPH. Let (R,m) be a
regular local ring of Krull dimension 2. Then R is a coherent domain, but not
a CPH ring by Theorem 3.3 and [12, Corollary 4.4].
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Let us say that an R-module M is torsion-free if, ax = 0 for x ∈ M , and for
a non-zero-divisor a ∈ C(R), where C(R) is the center of R, we have x = 0.
Note that projective modules are torsion-free. We pose the following question:
whether copure projective modules whether are also torsion-free.

Theorem 3.12. Let R be a commutative coherent CPH ring. Then every

copure projective R-module M is torsion-free. Moreover, if R is a CPH domain,

then every finitely generated torsion-free R-module is finitely presented copure

projective.

Proof. Let M be a copure projective R-module. For any a ∈ R which is nei-
ther a non-zero-divisor nor a unit, fdRR/aR ≤ 1 and the sequence 0 → aR →
R → R/aR → 0 is exact. Let I be an ideal of R. By hypothesis, R is a CPH
ring, and so cpD(R) ≤ 1 by Theorem 3.1. Then cpdR(R/I) ≤ 1, and hence
Ext2R(R/I,R) = 0 and Ext2R(R/I, aR) = 0. Thus idRR ≤ 1 and idRaR ≤ 1.
Now, let X be an R-module. Then we can obtain idRR/aR ≤ 1 from the se-
quence 0 = Ext2R(X,R) → Ext2R(X,R/aR) → Ext3R(X, aR) = 0. So there is an
exact sequence 0 → R/aR → E → C → 0 with E,C injective. By [5, Theorem

1], E+, C+ are flat. For any ideal I of R, TorR2 (R/I,E)+ ∼= Ext2R(R/I,E+) = 0

since cpdR(R/I) ≤ 1. Hence fdRE ≤ 1 by TorR2 (R/I,E) = 0. By the same

way, fdRC ≤ 1. Then 0 → TorR1 (R/aR,M)
f→ TorR1 (E,M) → cok(f) → 0

is exact. Hence 0 → cok(f)+ → TorR1 (E,M)+ → TorR1 (R/aR,M)+ → 0 is

also exact. By hypothesis, M is copure projective and so TorR1 (E,M)+ ∼=
Ext1R(M,E+) = 0. Hence Ma = {m ∈ M | am = 0 } ∼= TorR1 (R/aR,M) = 0.
Thus M is torsion-free, as desired.

Now, assume R is a CPH domain. Let M be a finitely generated torsionfree
module. Then M can be imbedded into a finitely generated free module. Hence
M is finitely presented copure projective. �

Example 3.13. A copure projective R-module is not necessarily torsion-free.
In fact, let L be a field and set R = L[x, y]. Set M = R/(x, y). Then for any flat
R-module N , we have Ext1R(M,N) = 0, but Ext2R(M,R) ∼= HomR(M,M) 6= 0.
Hence M is copure projective but is not torsion-free.

An R-moduleM is said to be reflexive ifM∼=M∗∗, whereM∗=HomR(M,R).
Let R be a domain and K the quotient field of R. For a submodule A of K, we
denote A−1 = { x ∈ K |xA ⊆ R } and Av = (A−1)−1. An ideal I of R is said to
be a v-ideal if I = Iv. For an R-module N , we set ann(N) = { r ∈ R | rN = 0 }.
Now, for a Noetherian domain R, we study when R is a CPH ring.

Theorem 3.14. The following statements are equivalent for a Noetherian do-

main R:
(1) R is a CPH domain.

(2) Every ideal I of R is a v-ideal.
(3) Every prime ideal of R is copure projective.

(4) Every finitely generated copure projective module is reflexive.
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(5) For every 0 6= u ∈ R that is not a unit, R/(u) is a QF ring.

Proof. (1)⇒(4). Let M be a finitely generated copure projective R-module.
There is an exact sequence 0 → A → P → M → 0 where P is finitely generated
projective. Then 0 → M∗ → P ∗ → A∗ → 0 is exact and P ∗ is finitely generated
projective. Hence A∗ is finitely generated torsion-free. Consider the exact
sequence 0 → A∗ → F → F/A∗ → 0 with F being a finitely generated free
R-module. Then we get Ext1R(A

∗, R) ∼= Ext2R(F/A
∗, R) = 0 by Theorem 3.1

and [12, Theorem 4.11]. Hence 0 → A∗∗ → P ∗∗ → M∗∗ → 0 is exact. Notice
that P is a reflexive submodule of a finitely generated torsion-free R-module.
Then we have the following commutative diagram with exact rows:

0 // A //

ρ

��

P // M //

f
��
✤

✤

✤

0

0 // A∗∗ // P // P/A∗∗ // 0

Then 0 → kerf ∼= cokρ → M
f→ P/A∗∗ → 0 is exact. Because rank(A) =

rank(A∗∗), we have rank(M) = rank(P/A∗∗). By Theorem 3.12, M is finitely
generated torsion-free. Hence kerf = 0 since rank(kerf) = 0 and kerf is
torsion-free. That is A ∼= A∗∗. We infer that M is reflexive by the following
commutative diagram with exact rows:

0 // A //

∼=
��

P //

∼=
��

M //

��
✤

✤

0

0 // A∗∗ // P ∗∗ // M∗∗ // 0

(4)⇒(2) and (1)⇒(3) are both obvious.
(2)⇒(5). Set T = R/uR. It is clear that T is Noetherian. For any ideal

J = I/(u) of T , where I ⊇ (u) is an ideal of R, by hypothesis, Iv = I. Then
annT (annT (J)) = Iv/(u) = J . Hence T is a QF ring.

(5)⇒(1). Let I 6= 0 be an ideal of R. Set M = R/I. Pick 0 6= u ∈ I and
note R = R/uR. Then uM = 0 and M is R-module. By hypothesis, M is
a copure projective R-module. Let N be a flat R-module. Certainly, u is a
non-zero-divisor of N . By Rees Theorem Ext2R(M,N) ∼= Ext1

R
(M,N/uN) = 0.

Thus cpdR(M) ≤ 1. By [12, Corollary 4.12], cpD(R) ≤ 1. Hence R is a CPH
ring by Theorem 3.1.

(3)⇒(1). Let F be a flat R-module. Consider the exact sequence 0 → F →
E → E/F → 0 in which E is injective. Then for any prime ideal p of R, we
get Ext1R(R/p, E/F ) ∼= Ext2R(R/p, F ) ∼= Ext1R(p, F ) = 0 by (3). Hence E/F is
injective. Hence idRF ≤ 1. By Theorem 3.1 and [12, Theorem 4.11], R is a
CPH domain. �

An R-module M is said to be Gorenstein projective (G-projective for short)
if there is an exact sequence of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → · · ·
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such that M ∼= Im(P0 → P 0) and that HomR(−, Q) leaves the sequence P

exact whenever Q is a projective R-module. Recall that a ring R is called
Gorenstein hereditary if all submodules of a projective R-module are Goren-
stein projective. Also, a Gorenstein hereditary domain is called a Gorenstein
Dedekind domain. Now, we will prove that Gorenstein Dedekind domains are
exactly CPH domains.

Theorem 3.15. Let R be a domain. Then the following statements are equi-

valent:
(1) R is a Gorenstein Dedekind domain.

(2) R is a CPH domain.

(3) R is a Noetherian ring and for any maximal ideal m of R, Rm is a CPH
ring.

Proof. (1)⇒(2). For every 0 6= u ∈ R that is not a unit, by [15, Corollary 2.7],
R/(u) is a QF ring. Hence R is a CPH domain by Theorem 3.14.

(2)⇒(1). By Theorem 3.9 and Theorem 3.1, R is a Noetherian ring with
cpD(R) ≤ 1. Hence idR(RR) ≤ 1 and R is a Gorenstein Dedekind domain.

(2)⇔(3). By Theorem 2.3. �

It was shown in [15, Corollary 1.3] that a domain R is Gorenstein Dedekind
domain if and only if every ideal of R is G-projective. We are in the position
of characterizing Gorenstein Dedekind domains in terms of copure projective
(n-copure projective, strongly copure projective) modules.

Corollary 3.16. The following statements are equivalent for a domain R:
(1) R is a Gorenstein Dedekind domain.

(2) Every ideal I of R is n-copure projective, where 0 ≤ n < ∞.

(3) Every ideal I of R is strongly projective.

(4) Every submodule of free (or projective, or m-copure projective, or strongly

projective) modules is n-copure projective (or strongly projective), where 0 ≤
n,m < ∞.

(5) idRF ≤ 1 for any R-modules F with fdRF < ∞.

Proof. By Theorem 3.15, Theorem 3.1 and [12, Theorem 4.11]. �

We say that a module M has Gorenstein projective dimension at most a
positive integer n and we write GpdRM ≤ n, if there is an exact sequence of
modules 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 where each Pi is
Gorenstein projective. The Gorenstein global dimension G-gl.dim(R) of R is
defined as G-gl.dim(R) = sup{GpdRM |M is any R-module}.

Let R be a ring. By [3, Proposition 1.3] and [12, Remark 4.2], R is a QF
ring if and only if G-gl.dim(R) = 0; if and only if cpD(R) = 0. By Theorem
3.15 and Theorem 3.1, a Noetherian domain R is Gorenstein Dedekind if and
only if G-gl.dim(R) ≤ 1; if and only if cpD(R) ≤ 1. Now, for a ring R with
G-gl.dim(R) < ∞, we conclude this article with the following proposition.
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Proposition 3.17. Let R be a ring with G-gl.dim(R) < ∞. G-gl.dim(R) ≤
cpD(R). Moreover, if R is a Noetherian ring, then G-gl.dim(R) = cpD(R).

Proof. Set cpD(R) = n. Let P be a projective module. By [12, Theorem
4.11], idRP ≤ n. Then by [3, Theorem 1.2], G-gl.dim(R) ≤ n. Hence G-
gl.dim(R) ≤ cpD(R).

Now, let R be a Noetherian ring. Set G-gl.dim(R) = n. Let F be any flat
R-module and let I be an ideal of R. By [20, Theorem 5.40], F = lim

−→
Fi,

where each Fi is a finitely generated free R-module. By [3, Theorem 1.2],
Extn+1

R (R/I, Fi) = 0. Then by [22, Theorem 3.2], we have Extn+1
R (R/I, F ) =

Extn+1
R (R/I, lim

−→
Fi) ∼= lim

−→
Extn+1

R (R/I, Fi) = 0. Hence idRF ≤ n. By [12,

Theorem 4.11], cpD(R) ≤ n. We get G-gl.dim(R) = cpD(R). �
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