• Title/Summary/Keyword: Decoupled Design

Search Result 111, Processing Time 0.022 seconds

Development of a Robust Design Process Using a Robustness Index (강건성 지수를 이용한 강건설계 기법의 개발)

  • Hwang, Kwang-Hyeon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1426-1435
    • /
    • 2003
  • Design goal is to find the one that has the highest probability of success and the smallest variation. A robustness index has been proposed to satisfy these conditions. The two-step optimization process of the target problem requires a scaling factor. The search process of a scaling factor is replaced with the making of the decoupled design between the mean and the standard deviation. The decoupled design matrix is formed from the sensitivity or the sum of squares. After establishing the design matrix, the robust design process has a new three-step one. The first is ″reduce variability,″ the second is ″make the candidate designs that satisfy constraints and move the mean on the target,″ and the final is ″select the best robust design using the proposed robustness index.″ The robust design process is verified by three examples and the results using the robustness index are compared with those of other indices.

H2 Design of Decoupled Control Systems Based on Directional Interpolations

  • Park, Kiheon;Kim, Jin-Geol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1551-1558
    • /
    • 2013
  • $H_2$ design of decoupled control systems is treated in the generalized plant model. The existence condition of a decoupling controller is stated and a parameterized form of all achievable decoupled closed loop transfer matrices is presented by using the directional interpolation approaches under the assumption of simple transmission zeros. The class of all decoupling controllers that yield finite cost function is obtained as a parameterized form and an illustrative example to find the optimal controller is provided.

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

A Tracking Filter Design of the Radar Beacon System for Automatic Take-off and Landing of Unmanned Aerial Vehicle (무인항공기 자동이착륙을 위한 레이다 비콘 시스템의 추적필터 설계)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This paper presents a tracking filter of radar beacon system (RBS) for automatic takeoff and landing of an unmanned aerial vehicle. The proposed tracking filter is designed as the decoupled tracking filter to reduce the computational burden. Also, an adaptive estimation method of the measurement error covariance is proposed to provide an improved tracking performance compared to the conventional decoupled tracking filter whenever the accuracy of RBS observations is degraded. 100 times Monte Carlo runs performed to analyze the performance of the proposed tracking filter in case of normal operation and degraded operations, respectively. The simulation results show that the proposed tracking filter provides the improved tracking accuracy in comparison with the conventional decoupled tracking filter.

Optimization Method for a Coupled Design, Considering Robustness (강건성을 고려한 연성설계의 최적화 방법)

  • Kang, Dong-Heon;Song, Byoung-Cheol;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2008
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

Robust Design Methodology of a Coupled System (연성 시스템의 강건설계 방법)

  • Lee, Kwon-Hee;Park, Gyung-Jin;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

An Adaptive Fuzzy Sliding-Mode Control for Decoupled Nonlinear Systems (분리된 비선형 시스템의 적응 퍼지 슬라이딩모드 제어)

  • Kim, Do-U;Yang, Hae-Won;Yun, Ji-Seop
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.719-727
    • /
    • 2002
  • We proposed a decoupled adaptive fuzzy sliding-mode control scheme for a class of fourth-order nonlinear systems. The system is decoupled into two second-order systems such that each subsystem has a separate control target expressed in terms of sliding surface. For these sliding surfaces, we define main and sub target conditions. and, we made intermediate variables which are interconnected both surface conditions from the sub target sliding surface. Then, Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target sliding surface including intermediate variables. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of sliding-mode control, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce the computing time considerably. We apply the decoupled adaptive sliding-mode control to a nonlinear Cart-Pole system and confirms the validity of the proposed approach.

A study on Flicker Noise Improvement by Decoupled Plasma Nitridation (Decoupled Plasma Nitridation에 의한 Flicker 노이즈 개선에 관한 연구)

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.747-752
    • /
    • 2014
  • This paper relates 10% shrink from $0.13{\mu}m$ design for logic devices as well as input and output (I/O) circuits, different from the previous shrink methodologies which shrink only core device. Thin gate oxide was changed to decoupled plasma nitridation(DPN) oxide as a thin gate oxide (1.2V) to reduce the flicker noise, resulting in three to five times lower flicker noise than pre-shrink process. Unavoidable issue by shrink is capacitor for this normally metal insulator metal (MIM). To solve this issue, 20% higher unit MIM capacitor ($1.2fF/{\mu}m^2$) was developed and its performance were evaluated.