• Title/Summary/Keyword: DC offsets

Search Result 14, Processing Time 0.025 seconds

Fourier Transform-Based Phasor Estimation Method Eliminating the Effect of the Exponentially Decaying DC offsets (지수 감쇄하는 DC 옵셋 영향을 제거한 푸리에 변환 기반 페이져 연산 기법 기법)

  • Lee, Dong-Gyu;Kim, Cheol-Hun;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1485-1490
    • /
    • 2008
  • This paper proposes a new Fourier transform-based phasor estimation method to eliminate the adverse influence of the exponentially decaying dc offsets when Discrete Fourier Transform (DFT) is used to calculate the phasor of the fundamental frequency component in a relaying signal. By subtracting the result of odd-sample-set DFT from the result of even-sample-set DFT, the information of dc offsets can be obtained. Two dc offsets in a relaying signal are treated as one dc offset which is piecewise approximated in one cycle data window. The effect of the dc offsets can be eliminated by the approximated dc offset. The performance of the proposed algorithm is evaluated by using computer-simulated signals and EMTP-generated signals. The algorithm is also tested on a hardware board with TMS320C32 microprocessor. The evaluation results indicate that the proposed algorithm has the stable and accurate eliminating performance even if the input signal contains two decaying dc components having different time constants.

A Study on a Performance Progress of Direct-Conversion Receiver as removing DC offset. (Direct-Conversion 수신기에서 DC offset 제거에 따른 성능 개선에 관한 연구)

  • 김철성;박성진;조형래
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.162-165
    • /
    • 2000
  • This paper presents the analysis of the effect which DC offsets produced in the direct-conversion receiver system under the AWGN circumstance exercise on the system performance. Then, as a method which improve the system performance by removing the DC offsets, we proposed the plan which can copes with the time variant DC offsets occurrences according to taking accumulation and average through the loop signals which DC offsets are produced.

  • PDF

Phasor Estimation Method Eliminating the Effect of the DC offsets (DC 옵셋의 영향을 제거한 페이저 연산 기법)

  • Lee, Dong-Gyu;Kim, Hyung-Kyu;Kwon, Young-Jin;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.203_204
    • /
    • 2009
  • In this paper, we propose a Fourier transform-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Discrete Fourier Transform (DFT) is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. In this paper, the error due to DC offsets in a DFT is calculated and eliminated using the outputs of quaternity DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated by using computer-simulated signals and EMTP-generated signals. A performance evaluation showed that the proposed algorithm was not affected by system and fault conditions. Thus, the proposed algorithm can effectively suppress the adverse influence of DC offsets in a relaying signal.

  • PDF

Compensation Strategy to Eliminate the Effect of Current Measurement Offsets in Grid-Connected Inverters

  • Lee, Chang-Hee;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.383-391
    • /
    • 2014
  • For the digital control of systems such as grid-connected inverters, measuring inverter output currents accurately is essential. However, current measurement offsets are inevitably generated by current measurement paths and cause DC current components in real inverter output currents. Real inverter output currents with DC components cause the DC-link capacitor voltage to oscillate at the frequency of a utility voltage. For these reasons, current measurement offsets deteriorate the overall system performance. A compensation strategy to eliminate the effect of current measurement offsets in grid-connected inverters is proposed in this study. The validity of the proposed compensation strategy is verified through simulations and experiments. Results show that the proposed compensation strategy improves the performance of grid-connected inverters.

Distance Relaying Algorithm Using a DFT-based Modified Phasor Estimation Method (DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘)

  • Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1360-1365
    • /
    • 2010
  • In this paper, we propose a distance relaying algorithm using a Discrete Fourier Transform (DFT)-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Most distance relays are based on estimating phasors of the voltage and current signals. A DFT is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. For this reason, distance relays have a tendency to over-reach or under-reach in the presence of DC offset components in a fault current. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. The error due to DC offsets in a DFT is calculated and eliminated using the outputs of an even-sample-set DFT and an odd-sample-set DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated for a-phase to ground faults on a 345 kV, 50 km, simple overhead transmission line. The Electromagnetic Transient Program (EMTP) is used to generate fault signals. The evaluation results indicate that adopting the proposed algorithm in distance relays can effectively suppress the adverse influence of DC offsets.

Design of a High-performance High-pass Generalized Integrator Based Single-phase PLL

  • Kulkarni, Abhijit;John, Vinod
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1231-1243
    • /
    • 2017
  • Grid-interactive power converters are normally synchronized with the grid using phase-locked loops (PLLs). The performance of the PLLs is affected by the non-ideal conditions in the sensed grid voltage such as harmonics, frequency deviations and the dc offsets in single-phase systems. In this paper, a single-phase PLL is presented to mitigate the effects of these non-idealities. This PLL is based on the popular second order generalized integrator (SOGI) structure. The SOGI structure is modified to eliminate the effects of input dc offsets. The resulting SOGI structure has a high-pass filtering property. Hence, this PLL is termed as a high-pass generalized integrator based PLL (HGI-PLL). It has fixed parameters which reduces the implementation complexity and aids in the implementation in low-end digital controllers. The HGI-PLL is shown to have the lowest resource utilization among the SOGI based PLLs with dc cancelling capability. Systematic design methods are evolved leading to a design that limits the unit vector THD to within 1% for given non-ideal input conditions in terms of frequency deviation and harmonic distortion. The proposed designs achieve the fastest transient response. The performance of this PLL has been verified experimentally. The results agree with the theoretical prediction.

Adaptive Threshold Detection Using Expectation-Maximization Algorithm for Multi-Level Holographic Data Storage (멀티레벨 홀로그래픽 저장장치를 위한 적응 EM 알고리즘)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.809-814
    • /
    • 2012
  • We propose an adaptive threshold detector algorithm for multi-level holographic data storage based on the expectation-maximization (EM) method. In this paper, the signal intensities that are passed through the four-level holographic channel are modeled as a four Gaussian mixture with unknown DC offsets and the threshold levels are estimated based on the maximum likelihood criterion. We compare the bit error rate (BER) performance of the proposed algorithm with the non-adaptive threshold detection algorithm for various levels of DC offset and misalignments. Our proposed algorithm shows consistently acceptable performance when the DC offset variance is fixed or the misalignments are lower than 20%. When the DC offset varies with each page, the BER of the proposed method is acceptable when the misalignments are lower than 10% and DC offset variance is 0.001.

A Robust PLL Technique Based on the Digital Lock-in Amplifier under the Non-Sinusoidal Grid Conditions (디지털 록인앰프를 이용한 비정현 계통하에서 강인한 PLL 방법)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.104-106
    • /
    • 2018
  • The harmonics and the DC offset in the grid can cause serious synchronization problems for grid connected inverters (GCIs) which leads not able to satisfy the IEEE 519 and p1547 standards in terms of phase and frequency variations. In order to guarantee the smooth and reliable synchronization of GCIs with the grid, Phase Locked Loop (PLL) is the crucial element. Typically, the performance of the PLL is assessed to limit the grid disturbances e.g. grid harmonics, DC Offset and voltage sag etc. To ensure the quality of GCI, the PLL should be precise in estimating the grid amplitude, frequency and phase. Therefore, in this paper a novel Robust PLL technique called Digital Lock-in Amplifier (DLA) PLL is proposed. The proposed PLL estimate the frequency variations and phase errors accurately even in the highly distorted grid voltage conditions like grid voltage harmonics, DC offsets and grid voltage sag. To verify the performance of proposed method, it is compared with other six conventional used PLLs (CCF PLL, SOGI PLL, SOGI LPF PLL, APF PLL, dqDSC PLL, MAF PLL). The comparison is done by simulations on MATLAB Simulink. Finally, the experimental results are verified with Single Phase GCI Prototype.

  • PDF

Design and Performance Evaluation of In-Band Full-Duplex System Based on Direct Conversion Receiver (직접변환 수신기 구조에서 In-Band Full-Duplex 시스템 설계와 성능 특성 평가)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1258-1268
    • /
    • 2014
  • In this paper, we propose and design IBFD system based on DCR. And then, we analyze effect of DC offset by self-interference in the proposed system. Also, we evaluate BER performance of the proposed system according to DC offset. As a result of the simulation, we can confirm that when the self-interference is not completely cancelled by the RF cancellation, linearity of desired signal and self-interference is distorted by DC offset. Also, in the proposed system using m-QAM modulation, DC offsets of multi-level are caused by self-interference with m-QAM modulation. As a result, constellations of desired signal and self-interference are greatly distorted. In contrast, in the proposed system using m-PSK modulation, DC offset of single level is caused by self-interference with m-PSK modulation. In this condition, we confirm that distortion of constellations of desired signal and self-interference is less than when using m-QAM modulation. That is, we can confirm that m-PSK modulation is effective than m-QAM modulation in DCR based IBFD system. Also, we can confirm that it is important to cancel self-interference as much as possible in RF-stage.

Laser Doppler Vibrometer using the Bulk Homodyne Interferometer (호모다인 간섭계를 이용한 레이저 진동 측정기의 개발)

  • 라종필;경용수;왕세명;김경석;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • The FM demodulation method for a bulk homodyne laser interferometer is presented. The Doppler frequency that represents the surface velocity of a vibrating object is obtained by using the bulk homodyne laser interferometer, and converted to the voltage signal by using the proposed analogue FM demodulation circuit. The DC offsets of the interferent signals that are obtained from the bulk homodyne interferometer are eliminated by using a simple subtraction. The new method for compensation of the asymmetry of each channels is presented. The light power variation of the interferometer is normalized by using the Auto Gain Controller(AGC). The proposed FM demodulation algorithm is proved by the theoretical method, and validated by the experimental results. In experiments, the proposed FM demodulation algorithm is compared with the conventional demodulation methods.

  • PDF