• 제목/요약/키워드: D[X]${_N}_*$

검색결과 1,369건 처리시간 0.029초

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.951-965
    • /
    • 2019
  • Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.

*-NOETHERIAN DOMAINS AND THE RING D[X]N*, II

  • Chang, Gyu-Whan
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.49-61
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be a nonempty set of indeterminates over D, * be a star operation on D, $N_*$={f $\in$ D[X]|c(f)$^*$= D}, $*_w$ be the star operation on D defined by $I^{*_w}$ = ID[X]${_N}_*$ $\cap$ K, and [*] be the star operation on D[X] canonically associated to * as in Theorem 2.1. Let $A^g$ (resp., $A^{[*]g}$, $A^{[*]g}$) be the global (resp.,*-global, [*]-global) transform of a ring A. We show that D is a $*_w$-Noetherian domain if and only if D[X] is a [*]-Noetherian domain. We prove that $D^{*g}$[X]${_N}_*$ = (D[X]${_N}_*$)$^g$ = (D[X])$^{[*]g}$; hence if D is a $*_w$-Noetherian domain, then each ring between D[X]${_N}_*$ and $D^{*g}$[X]${_N}_*$ is a Noetherian domain. Let $\tilde{D}$ = $\cap${$D_P$|P $\in$ $*_w$-Max(D) and htP $\geq$2}. We show that $D\;\subseteq\;\tilde{D}\;\subseteq\;D^{*g}$ and study some properties of $\tilde{D}$ and $D^{*g}$.

HAUSDORFF DIMENSION OF THE SET CONCERNING WITH BOREL-BERNSTEIN THEORY IN LÜROTH EXPANSIONS

  • Shen, Luming
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1301-1316
    • /
    • 2017
  • It is well known that every $x{\in}(0,1]$ can be expanded to an infinite $L{\ddot{u}}roth$ series with the form of $$x={\frac{1}{d_1(x)}}+{\cdots}+{\frac{1}{d_1(x)(d_1(x)-1){\cdots}d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}}+{{\cdots}}$$, where $d_n(x){\geq}2$ for all $n{\geq}1$. In this paper, the set of points with some restrictions on the digits in $L{\ddot{u}}roth$ series expansions are considered. Namely, the Hausdorff dimension of following the set $$F_{\phi}=\{x{\in}(0,1]\;:\;d_n(x){\geq}{\phi}(n),\;i.o.n}$$ is determined, where ${\phi}$ is an integer-valued function defined on ${\mathbb{N}}$, and ${\phi}(n){\rightarrow}{\infty}$ as $n{\rightarrow}{\infty}$.

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

LOCALLY PSEUDO-VALUATION DOMAINS OF THE FORM D[X]Nv

  • Chang, Gyu-Whan
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1405-1416
    • /
    • 2008
  • Let D be an integral domain, X an indeterminate over D, $N_v = \{f{\in}D[X]|(A_f)_v=D\}.$. Among other things, we introduce the concept of t-locally PVDs and prove that $D[X]N_v$ is a locally PVD if and only if D is a t-locally PVD and a UMT-domain, if and only if D[X] is a t-locally PVD, if and only if each overring of $D[X]N_v$ is a locally PVD.

THE LATTICE DISTRIBUTIONS INDUCED BY THE SUM OF I.I.D. UNIFORM (0, 1) RANDOM VARIABLES

  • PARK, C.J.;CHUNG, H.Y.
    • 대한수학회지
    • /
    • 제15권1호
    • /
    • pp.59-61
    • /
    • 1978
  • Let $X_1$, $X_2$, ${\cdots}$, $X_n$ be i.i.d. uniform (0,1) random variables. Let $f_n(x)$ denote the probability density function (p.d.f.) of $T_n={\sum}^n_{i=1}X_i$. Consider a set S(x ; ${\delta}$) of lattice points defined by S(x ; ${\delta}$) = $x{\mid}x={\delta}+j$, j=0, 1, ${\cdots}$, n-1, $0{\leq}{\delta}{\leq}1$} The lattice distribution induced by the p.d.f. of $T_n$ is defined as follow: (1) $f_n^{(\delta)}(x)=\{f_n(x)\;if\;x{\in}S(x;{\delta})\\0\;otherwise.$. In this paper we show that $f_n{^{(\delta)}}(x)$ is a probability function thus we obtain a family of lattice distributions {$f_n{^{(\delta)}}(x)$ : $0{\leq}{\delta}{\leq}1$}, that the mean and variance of the lattice distributions are independent of ${\delta}$.

  • PDF

LOCALLY DIVIDED DOMAINS OF THE FORM $D[X]_N_v$

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Let D be an integral domain, X be an indeterminate over D, and $N_v=\{f{\in}D[X]{\mid}(A_f)_v=D\}$. In this paper, we introduce the concept of t-locally divided domains, and we then prove that $D[X]_{N_v}$ is a locally divided domain if and only if D is a t-locally divided UMT-domain, if and only if D[X] is a t-locally divided domain.

STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN RANDOM NORMED SPACES

  • Schin, Seung Won;Ki, DoHyeong;Chang, JaeWon;Kim, Min June;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제18권4호
    • /
    • pp.395-407
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations $$cf\(\sum_{i=1}^{n}x_i\)+\sum_{j=2}^{n}f\(\sum_{i=1}^{n}x_i-(n+c-1)x_j\)\\=(n+c-1)\(f(x_1)+c\sum_{i=2}^{n}f(x_i)+\sum_{i<j,j=3}^{n}\(\sum_{i=2}^{n-1}f(x_i-x_j\)\),\\Q\(\sum_{i=1}^{n}d_ix_i\)+\sum_{1{\leq}i<j{\leq}n}d_id_jQ(x_i-x_j)=\(\sum_{i=1}^{n}d_i\)\(\sum_{i=1}^{n}d_iQ(x_i)\)$$ in random normed spaces.

3차원 유한요소분석에 의한 소형견의 견치와 열육치의 교합력 방향 분석 (Analysis of the direction of the canine and carnassial of small dog by 3D FEM)

  • 박유진;최성민
    • 대한치과기공학회지
    • /
    • 제42권2호
    • /
    • pp.139-145
    • /
    • 2020
  • Purpose: This study is for the prosthesis of dog. Observed the occlusal relation between the small dog canine and carnassial teeth. The direction of the bite force was analyzed by 3D FEM(finite element method). Methods: The mandibular canine and carnassial of dog were tested. The skull of dog was contact point confirmed by dental CAD. The skull of dog was scaned using CT and a 3D model was created. The 3D model was analyzed ABAQUS. Closing movement has been 100N, 200N, 300N, 500N, 1000N, 1500N. The Direction of bite force was confirmed. Results: As occlusal force increased, the direction of bite force appeared to (-y), (-x,-y,-z), (-x,-y), (-x,-y,+z), (-x,-y,+ z), (+x,-y) in mandibular left canine. And the direction was seen at (+x, -y), (+x,-y,-z), (+x,-y), (-x,-y,+z), (-x,-y,+z), (+x,-y). When the occlusal load is 100 N, 200 N, 300 N, 500 N, the direction of the mandibular carnassial appears as (-x, -y, -z), and when the occlusal load is 1000 N, 1500 N, the direction appears as (-x,-y). Conclusion: The mandibular canine showed irregularities in the coordinates of the direction of the bite force, and the mandibular carnassial showed regularity in the coordinates of the direction of the bite force.

A NOTE ON SKEW DERIVATIONS IN PRIME RINGS

  • De Filippis, Vincenzo;Fosner, Ajda
    • 대한수학회보
    • /
    • 제49권4호
    • /
    • pp.885-898
    • /
    • 2012
  • Let m, n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : $R{\rightarrow}R$ be a skew derivation of R and $E(x)=D(x^{m+n+r})-D(x^m)x^{n+r}-x^mD(x^n)x^r-x^{m+n}D(x^r)$. We prove that if $E(x)=0$ for all $x{\in}L$, then D is a usual derivation of R or R satisfies $s_4(x_1,{\ldots},x_4)$, the standard identity of degree 4.