• Title/Summary/Keyword: Curvature constant

Search Result 395, Processing Time 0.025 seconds

A GLOBAL STUDY ON SUBMANIFOLDS OF CODIMENSION 2 IN A SPHERE

  • Hyun, Jong-Ik
    • The Pure and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • M be an ($n\geq3$)-dimensional compact connected and oriented Riemannian manifold isometrically immersed on an (n + 2)-dimensional sphere $S^{n+2}$(c). If all sectional curvatures of M are not less than a positive constant c, show that M is a real homology sphere.

  • PDF

Rotation-Free Plate Element Based on the Natural Element Method (자연요소법에 기초한 회전자유도가 없는 평판요소)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Lee, Hong-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.513-518
    • /
    • 2007
  • A polygon-wise constant curvature natural element approximation is presented in this paper for the numerical implementation of the abstract Kirchhoff plate model. The strict continuity requirement in the displacement field is relaxed by converting the area integral of the curvatures into the boundary integral along the Voronoi boundary. Curvatures and bending moments are assumed to be constant within each Voronoi polygon, and the Voronoi-polygon-wise constant curvatures are derived in a selective manner for the sake of the imposition of essential boundary conditions. The numerical results illustrating the proposed method are also given.

  • PDF

Formulation of the Panel Method with Linearly Distributed Dipole Strength on Triangular Panels (삼각형 패널 상에 선형적으로 분포된 다이폴 강도를 갖는 패널법의 정식화)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.114-123
    • /
    • 2020
  • A high-order potential-based panel method based on Green's theorem, with piecewise-linear dipole strength on triangular panels, is formulated for the analysis of potential flow around a three-dimensional wing. Previous low-order panel methods adopt square panels with piecewise-constant dipole strength, which results in inherent errors. Square panels can not represent a high curvature lifting body, such as propellers, since the four vertices of the square panel do not locate at the same flat plane. Moreover the piecewise-constant dipole strength induces inevitable errors due to the steps in dipole strength between adjacent panels. In this paper a high-order panel method is formulated to improve accuracy by adopting a piecewise linear dipole strength on triangular panels. Firstly, the square panels are replaced by triangular panels in order to increase the geometric accuracy in representing the shape of the object with large curvature. Next, the step difference of the dipole strength between adjacent panels is removed by adopting piecewise-linear dipole strength on the triangular panels. The calculated results by the present method is compared with analytical ones for simple non-lifting geometries, such as ellipsoid. The results for an elliptic wing with zero thickness at finite angle of attack are compared with Jordan's results. The comparison shows reasonable agrements for the both lifting and non-lifting bodies.

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF

BERTRAND CURVES IN NON-FLAT 3-DIMENSIONAL (RIEMANNIAN OR LORENTZIAN) SPACE FORMS

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1109-1126
    • /
    • 2013
  • Let $\mathbb{M}^3_q(c)$ denote the 3-dimensional space form of index $q=0,1$, and constant curvature $c{\neq}0$. A curve ${\alpha}$ immersed in $\mathbb{M}^3_q(c)$ is said to be a Bertrand curve if there exists another curve ${\beta}$ and a one-to-one correspondence between ${\alpha}$ and ${\beta}$ such that both curves have common principal normal geodesics at corresponding points. We obtain characterizations for both the cases of non-null curves and null curves. For non-null curves our theorem formally agrees with the classical one: non-null Bertrand curves in $\mathbb{M}^3_q(c)$ correspond with curves for which there exist two constants ${\lambda}{\neq}0$ and ${\mu}$ such that ${\lambda}{\kappa}+{\mu}{\tau}=1$, where ${\kappa}$ and ${\tau}$ stand for the curvature and torsion of the curve. As a consequence, non-null helices in $\mathbb{M}^3_q(c)$ are the only twisted curves in $\mathbb{M}^3_q(c)$ having infinite non-null Bertrand conjugate curves. In the case of null curves in the 3-dimensional Lorentzian space forms, we show that a null curve is a Bertrand curve if and only if it has non-zero constant second Frenet curvature. In the particular case where null curves are parametrized by the pseudo-arc length parameter, null helices are the only null Bertrand curves.

Uniform Scallop Height Tool Path Generation Using CL Surface Deformation (CL면 변형 방법을 이용한 균일한 조도의 공구 경로 생성)

  • Yang Min-Yang;Kim Su-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.895-903
    • /
    • 2005
  • In this paper, we present a cutter location (CL) surface deformation approach for constant scallop height tool path generation from triangular mesh. The triangular mesh model of the stereo lithography (STL) format is offset to the CL surface and then deformed in accordance with the deformation vectors, which are computed by the slope and the curvature of the CL surface. In addition, the tool path which is computed by slicing the deformed CL surface is inversely deformed by those same deformation vectors to a tool path with a constant scallop height. The proposed method is implemented, and a tool path generated by the proposed method is tested by simulation and by numerical control (NC) machining. The scallop height was found to be constant over the entire machined surface, demonstrating much better quality than that of mesh slicing, under the same constraints for machining time.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

Effects of Rotatory Inertia and Shear Deformation on Natural Frequencies of Arches with Variable Curvature (회전관성 및 전단변형이 변화곡률 아치의 고유진동수에 미치는 영향)

  • Oh, Sang Jin;Lee, Byoung Koo;Lee, In Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.673-682
    • /
    • 1997
  • The main purpose of this paper is to investigate the effects of rotatory inertia and shear deformation on the natural frequencies of arches with variable curvature. The differential equations are derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. The governing equations are solved numerically for parabolic, circular and elliptic geometries with hinged-hinged, hinged-clamped and clamped-clamped end constraints. For each cases, the four lowest frequency parameters are presented as functions of the two dimensionless system parameters; the arch rise to span length ratio, and the slenderness ratio.

  • PDF