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POLARITY OF COHOMOGENEITY TWO ACTIONS ON

NEGATIVELY CURVED SPACE FORMS

Mojtaba Heidari and Reza Mirzaie

Abstract. We study the polarity of cohomogeneity two isometric actions

on Riemannian manifolds of constant negative curvature.

1. Introduction

An action of a Lie group G on a complete Riemannian manifold M is called
polar if there exists a complete submanifold W that meets all the orbits and
it is perpendicular to the orbits at intersection points. Such a submanifold is
called a section and it is a totally geodesic submanifold of M . A polar ac-
tion is called hyperpolar if the section is a flat Riemannian submanifold of M .
This concept was pioneered by Szenthe in [22,23] and independently by Palais
and Terng in [17]. Since in general the smooth structure of the quotient M

G
is too complicated to do analysis effectively, polar actions are natural class
of group actions where a reduction to a potentially simpler lower dimensional
problem along a smooth section is possible. In the present paper we consider
polar isometric actions. Classification of polar actions on a given Riemann-
ian manifold and topological or more precisely, geometric characterization of
the orbits of such actions on a given Riemannian manifold has been absorbing
problems for mathematicians in recent years. Dadok showed in [3] that a linear
representation which is polar is (up to orbit equivalence) the isotropy repre-
sentation of a symmetric space. Polar isometric actions on symmetric spaces
have been studied extensively. They were classified for compact rank one sym-
metric spaces, and for compact irreducible symmetric spaces of higher rank it
was shown that a polar action must be hyperpolar ([10, 11, 19]). Kollross ([9])
classified hyperpolar actions on irreducible compact symmetric spaces up to
orbit equivalence. For non-compact symmetric spaces, the classification is still
open. It is straightforward to see that polar actions on spheres are precisely
the restrictions of linear polar actions, and similarly that polar actions on real
projective spaces are orbit equivalent to those induced from polar actions on
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spheres. Polar actions of connected compact Lie groups on Euclidean spheres
have been classified in [8]. Polar actions on complex hyperbolic spaces have
been classified in [5]. Podesta and Thorbergsson have classified polar actions
on the complex quadric making use of their result that in this case the action is
coisotropic, meaning that the sections are totally real submanifolds [20]. From
the above mentioned classifications one also can deduce many results about or-
bits of the polar actions. It is shown in [10] that polar actions of cohomogeneity
two on simple compact Lie groups of higher rank, endowed with a biinvariant
Riemannian metric, are hyperpolar. In the present paper, we study the polarity
of isometric cohomogeneity two actions on Riemannian manifolds of constant
negative curvature. Topological properties of G-manifolds of low cohomogene-
ity is an active research area in differential geometry. In the negative curvature
case, cohomogeneity one Riemannian manifolds have been classified from topo-
logical points of view (see [18]). The present paper is in direction of previous
papers [12–14], about cohomogeneity two Riemannian manifolds of negative
curvature.

2. Preliminaries

We will use the following notations and assertions in our proofs:

(1) If M is a Riemannian manifold we will denote by M̃ its universal Rie-

mannian covering manifold with the covering map κ : M̃ → M . We will
denote by ∆ the decktransformation group which is isomorphic to π1(M) the
fundamental group of M .

(2) A Riemannian G-manifold is a Riemannian manifold M equipped with
an isometric action of G a connected and closed subgroup of Iso(M).

(3) If M is a Riemannian G-manifold, then there exists a closed and con-

nected subgroup G̃ of Iso(M̃) such that G̃ is a covering manifold for G and the

covering map κ : M̃ →M maps G̃-orbits of M̃ on to G-orbits of M . Members

of ∆ and G̃ commute, so each δ ∈ ∆ maps orbits to orbits (see [2], page 63).

(4) In (2), (M̃, G̃) is called the universal action cover of (M,G). M is called

universally polar if the action of G̃ on M̃ is polar.
(5) If M is G-manifold, then the dimension of the orbit space M

G is called
the cohomogeneity of the action of G on M and is denoted by coh(M,G). It is
clear that if G(x) is an orbit with maximum dimension among the orbits, then
coh(M,G) = dimM − dimG(x).

Remark 2.1. We recall that if Mn is a simply connected Riemannian manifold
of negative curvature, then the infinity M(∞) of M is the set of classes of
the asymptotic geodesics in M . If γ is a geodesic in M and z = [γ] is its
asymptotic class, then there is a foliation of M by hypersurfaces which all
of them intersect the geodesics in z = [γ] perpendicularly. Hypersurfaces of
the mentioned foliation are called horospheres centered at z. M ∪M(∞) is a
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topological space homeomorphic to closed disk Dn = {x ∈ Rn : |x| ≤ 1} (see
[6]).

If M is a Riemannian manifold of negative curvature we denote the isometry
group of M by Iso(M). If φ ∈ Iso(M), then the following map is called the
squared displacement function related to φ

fφ : M → R, fφ(x) = d2(x, φ(x)).

Remark 2.2 (see [1]). If M is a Riemannian manifold of negative curvature,
φ ∈ Iso(M) and C is the minimum point set of fφ, then one of the following is
true:

(1) φ has fixed point and C is equal to the fixed point set.
(2) φ translates a geodesic (i.e., there is a geodesic γ such that φ(γ) = γ)

and C is equal to the image of γ.
(3) fφ has no minimum point.

The isometries satisfying (1), (2) and (3) are called elliptic, axial and parabolic,
respectively.

Definition 2.3. A nonsimply connected Riemannian manifold M of negative
curvature is called axial (parabolic) if all elements of the decktransformation
group ∆ are axial (parabolic).

Remark 2.4. If Mn, n ≥ 2, is an axial Riemannian manifold of negative cur-
vature, then M is a vector bundle over a circle (see [7], Corollary 6.16). So, it
is diffeomorphic to S1 × Rn−1 or B2 × Rn−2, where B2 is the Moebius band.

Fact 2.5. If M is a simply connected Riemannian manifold of negative cur-
vature and φ ∈ Iso(M), then φ can be extended to a homeomorphism on
M = M ∪ M(∞) which we denote it also by φ. By Brouwer’s fixed point
theorem φ has fixed point on M . If φ is non-elliptic and has two different fixed
points x, y ∈ M , and γ is a geodesic joining x to y, then γ will be an axis for
φ (see [7], Proposition 6.4).

Remark 2.6. We know that if M is a simply Riemannian manifold of constant
negative curvature, then any pair of different points in M can be joined by
a unique geodesic. This criterion is not true for M in general, but if M has
constant negative curvature (or in general case, if M has strictly negative cur-
vature), then for any different points x, y ∈ M there exists a unique geodesic
joining x to y (see [7], page 61).

Remark 2.7 (see [7], pages 47, 58). Let S be a horosphere in a simply connected
Riemannian manifold M of negative curvature, related to asymptotic class of
geodesics [γ]. If γ is a unit speed geodesic, then the function f : M → R,
defined by f(p) = limt→∞ d(p, γ(t)) − t, is called a Bussmann function. For
each point p ∈ M there is a point η

S
(p) in S which is the unique point of S

nearest p, and the following map is a homeomorphism:

φ : M → S × R, φ(p) = (η
S
(p), f(p)).
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Corollary 2.8 (see [15], Corollary 2.4). If M is a simply connected Riemann-
ian manifold of negative curvature and G is a closed and connected subgroup
of Iso(M) such that MG = ∅, then there exists at most one geodesic orbit.

3. Results

Consider the Lorentzian space Rn,1(= Rn+1) with a non-degenerate scalar
product 〈, 〉 given by:

〈x, y〉 = −x1y1 +

n+1∑
i=2

xiyi.

It is well known that any simply connected Riemannian manifold of constant
negative curvature c < 0, is isometric to the hyperbolic space of curvature c
defined by:

Hn(c) = {x ∈ Rn,1 : 〈x, x〉 = −r2}, c =
1

r2
.

It is well known that each horosphere in Hn(c) is isometric to Rn−1. By using
the statements and remarks on pages 201 and 202 of [21], we have the following
fact:

Fact 3.1 (see [21]). Let S0 be a horosphere centered at a point z ∈ Hn(∞).
The point z determines a unique unit vector field ζ onHn which is also a parallel
normal field to any submanifold of Hn which is contained in a horosphere
centered at z. For each t ∈ R, put

St = {exp(tζ(q)) : q ∈ S0}.

The 1-parameter family St, t ∈ R, coincides with the foliation by horospheres
centered at z. let G be a connected and closed Lie subgroup of the isometries
of Hn(c) such that G(S0) = S0. Then

(a) We have G(St) = St, t ∈ R, and for each orbit G(p) in S0,

G(exp(tζ(p))) = {exp(tζ(q)) : q ∈ G(p)}.

(b) If V0 is a totally geodesic submanifold of S0, and Vt = {exp(tζ(q) :
q ∈ V0}, then Vt is a totally geodesic submanifold of St and

⋃
t Vt is a totally

geodesic submanifold of Hn.

Remark 3.2. The open disk model of M = Hn(c) is diffeomorphic to open
disk Dn in Rn and M(∞) can be considered as the boundary of the open
disc which is homeomorphic to Sn−1. Similarly, in the general case, if M is a
simply connected Riemannian manifold of negative curvature, then M ∪M(∞)
is homeomorphic to Dn = Dn ∪ Sn−1.

Proposition 3.3 (see [13]). If Mn is a cohomogeneity two Riemannian G-
manifold of negative curvature and MG 6= ∅, then either M is simply connected
or it is diffeomorphic to S1 × Rn−1 or B2 × Rn−2 (B2 is the Moebius band).
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Proposition 3.4. Let Mn, n ≥ 3, be a non-simply connected Riemannian G-

manifold of constant negative curvature, and (M̃ = Hn(c), G̃) be its universal
action cover. Then one of the following is true:

(a) MG 6= ∅.
(b) M is a parabolic manifold, all G̃-orbits are included in horospheres cen-

tered at the same point at infinity, and M is homeomorphic to a product M1×R
such that M1 is a flat G-manifold of cohomogeneity coh(M,G)− 1.

(c) M is axial and diffeomorphic to S1 × Rn−1 or B2 × Rn−2, where B2 is
the Moebius band.

Proof. We show that if (a) is not true, then (b) or (c) is true. Consider the
following two cases separately.

Case 1. For all non-identity δ ∈ ∆, fδ has no minimum.
Case 2. There exists a non-identity δ ∈ ∆ such that fδ has minimum point.
Case 1. Consider a non-identity δ ∈ ∆ and consider the continuous exten-

sion of δ as a map δ : M̃∪M̃(∞)→ M̃∪M̃(∞). Since M̃∪M̃(∞) is homeomor-

phic to Dn, by Brouwer’s fixed point theorem, δ : M̃∪M̃(∞)→ M̃∪M̃(∞) has

fixed point. Since δ has non fixed point in M̃ (from general theory of covering
spaces in topology, it is known that the members of ∆ have no fixed points in

M̃), then the fixed point of δ belongs to M̃(∞). If there exists two fixed points

for δ on M̃(∞), then by Remark 2.2(2) and Fact 2.5, fδ has minimum point,

which is not true by assumption. So, there is a unique fixed point z ∈ M̃(∞)
for δ. Let [γ] be the asymptotic class of the geodesics such that [γ] = z. This
means that δ is parabolic and leaves invariant the horosphere foliation centered
at z, then by [2], Lemma 3, for all horospheres S centered at z, δ(S) = S. Since

the elements of ∆ and G̃ commute, we can get easily from the uniqueness of z

that for all g ∈ G̃, g(z) = z.

Now consider a g ∈ G̃. If g is parabolic, then by [2], Lemma 3, for all
horospheres S centered at S, g(S) = S.

If g is axial and λ is its axes, then we get from the uniqueness of λ and δg = gδ
that δλ = λ which is contradiction (since λ must be minimum point set of fδ).

So, G̃ has no axial element. If g is elliptic and for a point x ∈ M̃ , g(x) = x,
then g leaves invariant the geodesic λ joining x and z, which is impossible as

before. So there is no elliptic element in G̃. Therefore, all elements of G̃ are

parabolic such that for all horospheres S centered at z and all g ∈ G̃, gS = S.

Thus, all G̃-orbits are included in horospheres centered at z. If δ′ is another
member of ∆, in a similar way as for δ, there is a point z′ at infinity fixed by

δ′ such that all G̃-orbits must be included in horospheres centered at z′. We

show that z = z′. If z 6= z′, then each G̃ orbit is included in intersection of
two different horospheres. But intersection of two different horospheres in Hn

is a compact set (for proof, consider horospheres in the Poincare model of the

hyperbolic space), so all G̃ orbits are compact. Then M̃ G̃ 6= ∅, so MG 6= ∅,
which is contradiction. Therefore, z = z′. Since δ′ is arbitrary in ∆, we get that
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∆(z) = z, so ∆(S) = S. Now, by using of Remark 2.7, and since G̃(S) = S, we
get that M is homeomorphic to S

∆ ×R, and S
∆ is a G-manifold of cohomgeneity

coh(M,G)− 1. This is part (b) of the theorem.
Case 2. Since δ is not elliptic then by Remark 2.2, the minimum point set

of fδ is the image of a geodesic γ. For each g ∈ G̃ we have δg = gδ, so gγ is
also a minimum point set for fδ. But γ with the mentioned property is unique,

so gγ = γ, and G̃(γ) = γ. Since M̃ G̃ is empty by assumption, then γ must be

a G̃-orbit. Since by Remark 2.8, the geodesic orbit is unique and all members
of ∆ map orbits to orbits, we have ∆(γ) = γ. Therefore, M is axial and by
Remark 2.4, we get part (c) of the theorem. �

Remark 3.5. If Rn is of cohomogeneity one under the action of G a closed and
connected subgroup of the isometries, then all orbits are perpendicular to some
lines which are called normal geodesics (see [16]).

Theorem 3.6. If M is a complete parabolic cohomogeneity two Riemannian
G-manifold of constant negative curvature and MG = ∅, then M is universally
polar.

Proof. By the proof of Theorem 3.4, Case 1, all G̃-orbits of M̃ = Hn(c) are
included in the horospheres centered at the same point z at infinity. We know
that the collection of all horospheres centered at z is in fact a one parameter
family {St} of horospheres. Consider a horosphere S0 centered at z. The

action of G̃ on S0 is of cohomogeneity one. Since S0 is isometric to Rn−1, then
by Remark 3.5, it is polar and each section is a normal geodesic (a geodesic
normal to the orbits at intersection points). Let λ0 be the image of a normal
geodesic in S0. Keeping the symbols of Fact 3.1, consider the vector field ζ on

M̃ which is parallel normal field to any submanifold of M̃ which is contained
in a horosphere centered at z. Now, put λt = {exp(tζ(q)) : q ∈ λ0} and let

W =
⋃
t λt. By Fact 3.1, W is a totally geodesic surface in M̃ . Let D0 be

an orbit in S0. Since λ0 is a normal geodesic in S0, D0 is orthogonal to λ0

at a point q ∈ S0. Fix q and consider the curve α(s) = exp(sζ(q)) in M̃ . By
definition of W , α is a curve in W and α′(0) = ζ(q). Since ζ(q) is orthogonal to
D0, D0 would be orthogonal to the curves α and λ0 of the surface W at their
intersection point q. This means that D0 is orthogonal to W . In a similar way
we can show that each orbit Dt in St, t ∈ R, is orthogonal to W . All orbits are
included in horospheres centered at z, so all orbits are orthogonal to W . Thus,

W is a section and G̃-action on M̃ is polar. �

By combination of Proposition 3.3, Proposition 3.4, and Theorem 3.6, we
get the following theorem.

Theorem 3.7. Let Mn, n ≥ 3, be a nonsimply connected Riemannian G-
manifold of constant negative curvature and of cohomogeneity two. Then either
M is universally polar or it is diffeomorphic to S1 × Rn−1 or B2 × Rn−2 (B2

is the Moebius band).
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Remark 3.8. Polar actions on the hyperbolic space Hn, n ≥ 2 have been
classified (see [4], page 328). Thus, our Theorem 3.7, can be useful to reduce the
classification problem of cohomogeneity two actions on Riemannian manifolds
of constant negative curvature to simpler cases.

Albeit classification of cohomogeneity two actions on Riemannian manifolds
of constant negative curvature is open yet, but there is a topological description
of the orbits of this kind of actions in [14]. To improve the main result of [14],
as an application of our theorems, we mention the following corollary.

Corollary 3.9. If Mn, n ≥ 3, is a complete and nonsimply connected ori-
entable cohomogeneity two Riemannian manifold of constant negative curva-
ture, then either π1(M) = Zp for some positive integer p or M is a fiber
bundle over S1.

Proof. By Theorems 3.3 and 3.5 in [16], if M1 is an orientable nonsimply con-
nected cohomogeneity one flat Riemannian manifold, then one of the following
is true:

(a) there is one singular orbit in M1 and π1(M) = Zp for some positive
integer p.

(b) There is no singular orbit and M1 is a fiber bundle over S1 or R. Clearly,
if M1 is not simply connected and it is fiber bundle over R, then by [16],
Proposition 3.4(c), it is also a fiber bundle over S1.

Now, by Proposition 3.4 and its proof and using Proposition 3.3, either M is
diffeomorphic to one of the spaces S1×Rn−1 or B2×Rn−2, or it is homeomor-
phic to the product M1 × R, where M1 is flat cohomogeneity one Riemannian
manifold. Since M is supposed to be orientable, then M1 is orientable and we
get the result. �
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