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BERTRAND CURVES IN NON-FLAT 3-DIMENSIONAL

(RIEMANNIAN OR LORENTZIAN) SPACE FORMS

Pascual Lucas and José Antonio Ortega-Yagües

Abstract. Let M
3
q
(c) denote the 3-dimensional space form of index q =

0, 1, and constant curvature c 6= 0. A curve α immersed in M
3
q
(c) is said

to be a Bertrand curve if there exists another curve β and a one-to-one
correspondence between α and β such that both curves have common
principal normal geodesics at corresponding points. We obtain charac-
terizations for both the cases of non-null curves and null curves. For
non-null curves our theorem formally agrees with the classical one: non-
null Bertrand curves in M3

q
(c) correspond with curves for which there

exist two constants λ 6= 0 and µ such that λκ + µτ = 1, where κ and
τ stand for the curvature and torsion of the curve. As a consequence,
non-null helices in M3

q
(c) are the only twisted curves in M3

q
(c) having in-

finite non-null Bertrand conjugate curves. In the case of null curves in
the 3-dimensional Lorentzian space forms, we show that a null curve is
a Bertrand curve if and only if it has non-zero constant second Frenet
curvature. In the particular case where null curves are parametrized by
the pseudo-arc length parameter, null helices are the only null Bertrand
curves.

1. Introduction

Saint-Venant proposed [22], in the middle of the 19th century, the question
whether upon the ruled surface generated by the principal normals of a curve
in the 3-dimensional Euclidean space R

3, a second curve can exist having the
same principal normals. This question was answered by Bertrand [5], who
showed that a necessary and sufficient condition is that a linear relationship
with constant coefficients shall exist between the curvature and torsion of the
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given original curve. Pair of curves of this kind have been called Conjugate
Bertrand curves or, more commonly, Bertrand curves.

The study of this kind of curves has been extended to many other ambient
spaces. Pears [21] studied this problem for curves in the n-dimensional Eu-
clidean space Rn, n > 3, and showed that a Bertrand curve in R

n must belong
to a three-dimensional subspace R

3 ⊂ R
n (see also [1, p. 176] and [18]). Many

authors have studied Bertrand curves in other ambient spaces ([8], [10], [11],
[13], [16], [20], [23]).

Let M3
q(c) ⊂ R

4
v denote the 3-dimensional space form of index q = 0, 1, and

constant curvature c 6= 0. A curve α immersed inM
3
q(c) is said to be a Bertrand

curve if there exists another curve β and a one-to-one correspondence between
α and β such that both curves have common principal normal geodesics at
corresponding points (see Section 2 for details; Subsection 2.1 for non-null
curves and Subsection 2.2 for null curves). The curves α and β are said to be
a pair of Bertrand curves in M

3
q(c).

The first properties about non-null Bertrand curves are presented in Sec-
tion 3:

a) the ‘distance’ between corresponding points is constant;
b) the angle between the tangent vectors at corresponding points (considered

as vectors in R
4
v) is constant;

c) the angle between the binormal vectors at corresponding points (consid-
ered as vectors in R

4
v) is constant.

We obtain some relationships among curvatures and torsions of a pair of
non-null Bertrand curves, and show that every non-null plane curve in M

3
q(c) is

a Bertrand curve with infinite Bertrand conjugate plane curves. Here, a plane
curve means a curve lying in a totally geodesic 2-dimensional surface of M3

q(c).
Our main theorem for non-null curves is a result which formally agrees with
the classical one: non-null Bertrand curves in M

3
q(c) correspond with curves

for which there exist two constants λ 6= 0 and µ such that λκ+ µτ = 1, where
κ and τ stand for the curvature and torsion of the curve. We conclude this
section with a characterization of non-null helices as the only twisted non-null
curves in M

3
q(c) having infinite non-null Bertrand conjugate curves. After that

we present some examples.
Last section is devoted to the study of null Bertrand curves. As in the non-

null case, the first result is that the ‘distance’ between corresponding points is
constant. The key result in the null case states that Frenet curvatures κα

1 , κ
α
2 ,

κβ
1 and κβ

2 of a pair of null Bertrand curves α and β must satisfy the following
relations:

(i) κα
1κ

β
1 > 0 is constant;

(ii) κα
2 = κβ

2 is constant.
After that we show that a null curve is a Bertrand curve if and only if it has

non-zero constant second Frenet curvature. In the particular case where null
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curves are parametrized by the pseudo-arc length parameter, we show that null
helices are the only null Bertrand curves.

2. Setup

Let R
n+1
v denote the (n + 1)-dimensional pseudo-Euclidean space of index

v ≥ 0 with metric tensor given by

〈, 〉 = −

v
∑

i=1

dx2
i ⊗ dx2

i +

n+1
∑

j=v+1

dx2
j ⊗ dx2

j ,

where (x1, . . . , xn+1) stands for the usual rectangular coordinates in R
n+1. The

pseudo-Euclidean hypersphere of index q ≥ 0 and curvature c > 0 is defined by

S
n
q (c) = {x = (x1, . . . , xn+1) ∈ R

n+1
q | 〈x, x〉 =

1

c2
},

and the pseudo-Euclidean hyperbolic space of index q ≥ 0 and curvature c < 0
is defined by

H
n
q (c) = {x = (x1, . . . , xn+1) ∈ R

n+1
q+1 | 〈x, x〉 = −

1

c2
}.

Without loss of generality we can assume that the constant curvature c is equal
to ±1. In order to simplify our notation and computations, we will denote
by M

n
q (c) the pseudo-Euclidean hypersphere S

n
q (1) or the pseudo-Euclidean

hyperbolic space H
n
q (−1) according to c = 1 or c = −1, respectively. We will

use R
n+1
v to denote the corresponding pseudo-Euclidean space where M

n
q (c)

lives, so that v = q if c = 1 and v = q + 1 if c = −1.
Let us recall the usual definition of wedge product (or cross product) in

R
n+1
v . Given n vectors X1, X2, . . . , Xn in R

n+1
v , we define its wedge product

X1 × · · · ×Xn as the unique vector in R
n+1
v such that

(2.1) 〈X1 × · · · ×Xn, Y 〉 = det(X1, . . . , Xn, Y ) for every Y ∈ R
n+1
v .

The wedge product × in R
n+1
v induces another wedge product ∧ in M

n
q (c)

as follows. Given a point p ∈ M
n
q (c) and n − 1 vectors X1, X2, . . . , Xn−1 in

TpM
n
q (c) ⊂ R

n+1
v , we define its wedge product X1 ∧ · · · ∧Xn−1 as the vector in

TpM
n
q (c) given by

X1 ∧ · · · ∧Xn−1 = p×X1 × · · · ×Xn−1.

It is easy to see that the usual orientation in R
n+1
v induces an orientation in

M
n
q (c) as follows: a basis {X1, X2, . . . , Xn} of TpM

n
q (c) is said to be positively

oriented if {X1, X2, . . . , Xn, p} is a basis of Rn+1
v positively oriented.

Many features of inner product spaces have analogues in the pseudo-Euclid-
ean case. For example, in the Euclidean space R

n the Schwarz inequality
permits the definition of the Euclidean angle θ between two vectors X and
Y as the unique number 0 ≤ θ ≤ π such that 〈X,Y 〉 = |X | |Y | cos θ. In the
Lorentzian space Ln = R

n
1 we have the following. Let us consider two non-null

vectors X,Y ∈ R
n
1 such that they span a timelike plane R

2
1; in this plane we
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can consider an orthonormal basis {e1, e2}, with 〈e1, e1〉 = −1 and 〈e2, e2〉 = 1.
Vectors X,Y can be written in this basis as X = (X1, X2) and Y = (Y1, Y2).

Definition 1 ([6, 7, 19]). Let us consider two non-null vectors X,Y ∈ R
n
1 .

a) Let us assume that X and Y are spacelike vectors, then
• if they span a spacelike plane, there is a unique number 0 ≤ θ ≤ π
such that 〈X,Y 〉 = |X | |Y | cos θ.

• if they span a timelike plane, there is a unique number θ ≥ 0 such
that 〈X,Y 〉 = ε |X | |Y | cosh θ, where ε = +1 or ε = −1 according
to sgn(X2) = sgn(Y2) or sgn(X2) 6= sgn(Y2), respectively.

b) Let us assume that X and Y are timelike vectors, then there is a unique
number θ ≥ 0 such that 〈X,Y 〉 = ε |X | |Y | cosh θ, where ε = +1 or
ε = −1 according to X and Y have different time-orientation or the
same time-orientation, respectively.

c) Let us assume that X is spacelike and Y is timelike, then there is a
unique number θ ≥ 0 such that 〈X,Y 〉 = ε |X | |Y | sinh θ, where ε = +1
or ε = −1 according to sgn(X2) = sgn(Y1) or sgn(X2) 6= sgn(Y1),
respectively.

Given two non-null vectorsX,Y ∈ R
n
1 , the corresponding number θ given above

will be called simply the angle between X and Y .

2.1. The Frenet apparatus of a non-null curve in M
3

q
(c)

Let α = α(s) : I ⊂ R → M
3
q(c) ⊂ R

4
v, q = 0, 1, be a non-null curve immersed

in the 3-dimensional space M
3
q(c) and assume without loss of generality that

α is parametrized by the arclength parameter. If α is not a geodesic and ∇0

stands for the Levi-Civita connection of R4
v, then there exists the Frenet frame

(positively oriented) {T,N,B} along α in M
3
q(c) such that

∇0
TT = −ε1cα+ ε2κN,

∇0
TN = −ε1κT + ε3τB,

∇0
TB = −ε2τN,

where κ and τ denote the curvature and torsion of α, respectively, and {ε1, ε2,
ε3} stand for the causal characters of {T,N,B}.

For any point α(s) in the curve α, the principal normal geodesic in M
3
q(c)

starting at α(s) is defined as the geodesic curve

(2.2) γα
s (t) = expα(s)(tN(s)) = f(t)α(s) + g(t)N(s), t ∈ R,

where the functions f and g are given by f(t) = cos t and g(t) = sin t if ε2c = 1,
whereas f(t) = cosh t and g(t) = sinh t if ε2c = −1.

2.2. The Frenet apparatus of a null curve in M
3

1
(c)

Let α : I ⊂ R → M
3
1(c) be a null curve immersed in M

3
1(c). If α is not a

null geodesic then α admits a Frenet frame {L = α′,W,N} along α, where the
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metric is given by

〈L,L〉 = 〈N,N〉 = 0, 〈L,N〉 = δ, δ = ±1,(2.3)

〈W,L〉 = 〈W,N〉 = 0, 〈W,W 〉 = 1,(2.4)

and the constant δ is chosen in such a way that {L,W,N} is positively oriented;
without loss of generality we can assume δ = −1. The Frenet equations are the
following (see [9]):

∇0
LL = κ1W,

∇0
LW = −κ2L+ κ1N,

∇0
LN = −κ2W + cα,

(2.5)

where the functions κ1 and κ2 are called the curvatures functions of the null
curve α with respect to the Frenet frame {L,W,N}. The null curve α is said
to be a null helix in M

3
1(c) if κ1 and κ2 are constant.

For a null curve which is not a geodesic we can choose a special parameter,
the pseudo-arc parameter of the null curve α, characterized by 〈∇α′α′,∇α′α′〉 =
1. In this case, equations (2.5) reduce to

∇0
LL = W,

∇0
LW = −κL+N,

∇0
LN = −κW + cα.

(2.6)

These equations are called the Cartan equations of the null curve α and the
function κ is called the Cartan curvature (see [12]). The fundamental theo-
rem for null curves tell us that κ determines completely the null curve up to
Lorentzian transformations (see [12]). Even more, given a function κ we can al-
ways construct a null curve, parametrized by the pseudo-arc length parameter,
whose curvature function is precisely κ. A non-geodesic null curve parametrized
by the pseudo-arc length parameter and admitting a Cartan frame {L,W,N}
as above is called a Cartan curve.

For any point α(s) in the null curve α, the principal normal geodesic in
M

3
1(c) starting at α(s) is defined as the geodesic curve

(2.7) γα
s (t) = expα(s)(tW (s)) = f(t)α(s) + g(t)W (s), t ∈ I ⊂ R,

where the functions f and g are given by f(t) = cos t and g(t) = sin t in the
De Sitter space S

3
1(1), whereas f(t) = cosh t and g(t) = sinh t in the anti-De

Sitter space H
3
1(−1).

3. Non-null Bertrand curves

Definition 2. A non-null curve α with non-zero curvature is said to be a
Bertrand curve if there exists another immersed non-null curve β = β(σ) : J ⊂
R → M

3
q(c), β 6= ±α, and a one-to-one correspondence between α and β (i.e. a

map s ∈ I → σ(s) ∈ J), such that both curves have common principal normal
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geodesics at corresponding points. We will said that β is a Bertrand mate
(or Bertrand conjugate) of α; the curves α and β are called a pair of non-null
Bertrand curves.

Let α(s) and β(σ) be a pair of Bertrand curves, then there exists a differen-
tiable function a(s) such that

(3.8) β(σ(s)) = f(a(s))α(s) + g(a(s))Nα(s),

where {Tα, Nα, Bα} denotes the Frenet frame along α and β(σ(s)) is the point
in β corresponding to α(s).

Proposition 1. Let α and β be a pair of non-null Bertrand curves in M
3
q(c).

Then the following properties hold:

a) The function a(s) is constant.

b) The angle between the tangent vectors at corresponding points (consi-
dered as vectors in R

4
v) is constant.

c) The angle between the binormal vectors at corresponding points (consi-
dered as vectors in R

4
v) is constant.

Proof. a) Since α and β have common principal normal geodesics at corre-
sponding points, we have

d

dt

∣

∣

∣

∣

t=a(s)

γα
s (t) = εNβ(σ(s)), ε = ±1,

and then, since f ′ = −ε2cg and g′ = f , we obtain

(3.9) Nβ(σ(s)) = −εε2cg(a(s))α(s) + εf(a(s))Nα(s),

where {Tβ, Nβ, Bβ} denotes the Frenet frame along β, with causal characters
given by {δ1, δ2, δ3}. On the other hand, the tangent vector to β is given by

d

ds
β(σ) = a′(s)f ′(a(s))α(s) + (f(a(s))− ε1κα(s)g(a(s)))Tα(s)

+ a′(s)g′(a(s))Nα(s) + ε3τα(s)g(a(s))Bα(s).

But d
ds
β(σ) = σ′(s)Tβ(σ(s)) and thus we have

0 =

〈

d

ds
β(σ), Nβ(σ)

〉

= εa′(s)(ε2f(a)
2 + cg(a)2) = εε2a

′(s),

and the proof finishes.
b) A straightforward computation shows that

d

ds
〈Tα(s), Tβ(σ(s))〉 = 〈−ε1cα(s) + ε2κα(s)Nα(s), Tβ(σ(s))〉

(3.10)

+ σ′(s) 〈Tα(s),−δ1cβ(σ(s)) + δ2κβ(σ(s))Nβ(σ(s))〉 .
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On the other hand, it is easy to get the following formula

Tβ(σ(s)) =
1

σ′(s)
((f(a)− ε1κα(s)g(a))Tα(s) + ε3τα(s)g(a) Bα(s)) ,(3.11)

that jointly with (3.8), (3.9) and (3.10) yields

d

ds
〈Tα(s), Tβ(σ(s))〉 = 0,

showing the claim.
c) Let θ denote the constant angle between Tα(s) and Tβ(σ(s)), then it is

not difficult to see that we can write

(3.12) Tβ(σ(s)) = ϕ(θ) Tα(s) + η(θ) Bα(s),

where the functions ϕ and η satisfy the following condition:

δ1 = ε1ϕ
2 + ε3η

2.(3.13)

By using the wedge product in R
4
v we can compute the binormal vector Bα

of the curve α as follows

Bα(s) = −ε3 α(s) × Tα(s)×Nα(s).

From this formula, it is not difficult to get

(3.14) Bβ(σ(s)) = εδ3(−ε1η(θ) Tα(s) + ε3ϕ(θ) Bα(s)),

and finally we deduce

〈Bα(s), Bβ(σ(s))〉 = εδ3ϕ(θ) = constant. �

Claims b) and c) of Proposition 1 admit an alternative statement. To do
that, let P 0

a (γ
α
s ) denote the parallel transport along the geodesic γα

s (t) between
the points γα

s (a) = β(σ(s)) and γα
s (0) = α(s). Then for every differentiable

vector field Y ∈ X(β) along β we can define a differentiable vector field X ∈
X(α) along α by the equation

X(s) = P 0
a (γ

α
s )(Y (σ(s))).

In short, we will write X = PY .
An interesting property of the parallel transport is that if two non-degenerate

hypersurfaces S1 ⊂ R
4
v and S2 ⊂ R

4
v are tangent along a parametrized non-null

curve α and v0 is a vector of Tα(s0)S1 = Tα(s0)S2, then V (s) is the parallel
transport of v0 along α relative to the hypersurface S1 if and only if V (s) is
the parallel transport of v0 along α relative to the hypersurface S2. Indeed,
the covariant derivative DV/ds of V is the same for both hypersurfaces.

Using this property we can show that the parallel transport along a geodesic
γ ⊂ M

3
q(c) of a vector orthogonal to γ′ is a constant vector field. In fact, let

γ = γ(s) be a geodesic of M3
q(c), then there exists a 2-plane Π ⊂ R

4
v passing

through the origin such that γ ⊂ M
3
q(c) ∩ Π. Let v0 be a vector tangent to

M
3
q(c) at some point p = γ(s0), and assume that v0 is orthogonal to γ′(s0).

Consider the hypercylinder C = γ × Π⊥ tangent to M
3
q(c) along γ, then the
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constant vector field V (s) = v0 is the parallel transport of v0 along γ relative to
the hypercylinder. But the above property yields that V (s) is also the parallel
transport of v0 along γ relative to the 3-space M

3
q(c).

Therefore, we have the following result.

Proposition 2. Let α and β be a pair of non-null Bertrand curves in M
3
q(c).

Then

a) the angle between Tα and PTβ is constant.

b) the angle between Bα and PBβ is constant.

Proof. Observe that (PTβ)(s) = P 0
a (γ

α
s )(Tβ(σ(s))) = Tβ(σ(s)) and (PBβ)(s) =

Bβ(σ(s)), so that the result is a direct consequence of Claims b) and c) of
Proposition 1. �

The following theorem is an extension of a result obtained by Lai [17] for
Bertrand curves in the 3-dimensional Euclidean space.

Theorem 3. Let α and β be a pair of non-null Bertrand curves in M
3
q(c).

Then there exist two constants a and θ such that the following relations hold:

a) (f(a)− ε1g(a)κα)η(θ) = ε3g(a)ϕ(θ)τα,
b) (f(a) + εδ1g(a)κβ)η(θ) = ε3g(a)ϕ(θ)τβ ,
c) (f(a)− ε1g(a)κα)(f(a) + εδ1g(a)κβ) = ε1δ1ϕ(θ)

2,

d) g(a)2τατβ = ε1δ1η(θ)
2,

where κα, τα, κβ and τβ denote the curvature and torsion of α and β, respec-
tively.

Proof. a) Taking covariant derivative in (3.8) and using (3.12) we have

d

ds
β(σ(s)) = σ′(s)ϕ(θ)Tα(s) + σ′(s)η(θ)Bα(s).

On the other hand, by using the Frenet equations we get

d

ds
β(σ(s)) = (f(a)− ε1g(a)κs(s))Tα(s) + ε3g(a)τα(s)Bα(s),

where we have used that a(s) = a is constant. Last two equations leads to

σ′(s)ϕ(θ) = f(a)− ε1g(a)κα(s),(3.15)

σ′(s)η(θ) = ε3g(a)τα(s),(3.16)

from which we deduce a).
b) Now we need to write the Frenet frame of α in terms of the Frenet frame

of β:

α(s(σ)) = f(a)β(σ)− εg(a)Nβ(σ),

Tα(s(σ)) = ε1δ1ϕ(θ)Tβ(σ) − εη(θ)Bβ(σ),

Nα(s(σ)) = ε2cg(a)β(σ) + εf(a)Nβ(σ),

Bα(s(σ)) = δ1ε3η(θ)Tβ(σ) + εϕ(θ)Bβ(σ).
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Reasoning as in case a) we deduce

ε1δ1s
′(σ)ϕ(θ) = f(a) + εδ1g(a)κβ(σ),(3.17)

ε1δ1s
′(σ)η(θ) = ε3g(a)τβ(σ),(3.18)

from which we deduce b).
c) It is a consequence of Eqs. (3.15) and (3.17).
d) It is a consequence of Eqs. (3.16) and (3.18). �

If α and β are non-null Bertrand curves in M
3
q(c), part d) of above theorem

implies that the product of their torsions at corresponding points is constant
and non-negative (or non-positive), according to the curves have the same
causal character (or different causal character, respectively). This is a general-
ization of the classical Schell’s theorem for curves in R

3.
A non-null curve α immersed in M

3
q(c) is said to be a plane curve if it lies

in a totally geodesic surface M
2 ⊂ M

3
q(c). As a consequence, its torsion is zero

at all points. A twisted curve α in M
3
q(c) (i.e., a curve with torsion τ 6= 0)

is said to be a helix if its curvature and torsion are non-zero constants. More
generally, a curve α = α(s) in M

3
q(c) is said to be a general helix if there exists

a Killing vector field V (s) with constant length along α and such that the angle
between V and α′ is a non-zero constant along α. The vector field V is called an
axis of the general helix α. Observe that plane curves and helices are obvious
examples of general helices.

Proposition 4 (Bertrand plane curves). a) Every non-null plane curve in

M
3
q(c) is a Bertrand curve and it has infinite Bertrand conjugate plane curves.

b) If a non-null Bertrand curve α in M
3
q(c) has a Bertrand conjugate β which

is a plane curve, then α is a plane curve on the same totally geodesic surface

M
2.

Proof. a) Let α be a plane curve in M
3
q(c), and for each real number a ∈ (−ε, ε)

let βa be the curve in M
3
q defined by

(3.19) βa(s) = f(a)α(s) + g(a)Nα(s).

We will see that βa is a Bertrand conjugate for all a ∈ (−ε, ε). Taking covariant
derivative in (3.19), and using the Frenet equations, we can assume without
loss of generality that

Tβa
(σ(s)) = Tα(s),(3.20)

σ′(s) = f(a)− ε1g(a)κα(s),(3.21)

where σ = σ(s) denotes the arc-length parameter of βa. Taking again covariant
derivative in (3.20) we easily get

Nβa
(σ(s)) = −ε2cg(a)α(s) + f(a)Nα(s),(3.22)

κβa
(σ(s)) =

ε1cg(a) + ε2f(a)κα(s)

f(a)− ε1g(a)κα(s)
,(3.23)
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and then the principal normal geodesic starting at a point βa(σ0), σ0 = σ(s0),
is given by

γ(t) = f(t)βa(σ0) + g(t)Nβa
(σ0) = f(t+ a)α(s0) + g(t+ a)Nα(s0),

which is nothing but a reparametrization of the principal normal geodesic start-
ing at α(s0).

Finally, by taking covariant derivative in (3.22), and using the Frenet equa-
tions, we have

σ′(s)
d

dσ
Nβa

(σ(s)) = −(ε2cg(a) + ε1f(a)κα(s))Tα(s),

that jointly with (3.20) yields τβa
= 0, that is, βa is also a plane curve in M

3
q(c).

b) Since τβ = 0, then from Theorem 3(d) we get η(θ) = 0 (and thus ϕ(θ)2 =
1). By using Theorem 3(a) we deduce that g(a)τα = 0. If g(a) = 0, then
f(a)2 = 1 and α = ±β, and so it is a plane curve on the same totally geodesic
surface; otherwise, τα = 0 and we reach the same conclusion. �

In [2], Barros shows the Lancret theorem in the 3-sphere: A curve α in
S
3 is a Lancret curve if and only if either (1) τα ≡ 0 and α is a curve in

some unit 2-dimensional sphere S
2(1), or (2) there exist a constant b 6= 0 such

that τα = bκα± 1. Barros’ result can be extended to curves immersed into a 3-
dimensional ambient space endowed with an indefinite metric; in [4] the authors
obtain a characterization of (non-null or null) Lancret curves in 3-dimensional
Lorentzian space forms (L3, S31 or H3

1). Now we extend this result to non-null
Bertrand curves in M

3
q(c).

Theorem 5. A non-null twisted curve α in M
3
q(c) is a Bertrand curve if and

only if there exist two constants λ 6= 0 and µ such that λκα + µτα = 1.

Proof. Let α be a non-null Bertrand curve. If α is not a plane curve (τα 6= 0),

then from Theorem 3(a) we have that λκα +µτα = 1, for constants λ = ε1
g(a)
f(a)

and µ = ε3
g(a)ϕ(θ)
f(a)η(θ) .

Now, let us suppose that λκα + µτα = 1 for certain constants λ 6= 0 and µ.
Let β be the curve in M

3
q(c) defined by

(3.24) β(s) = f(a)α(s) + g(a)Nα(s),

where a is the number such that λf(a) − ε1g(a) = 0. We will see that β(σ) is
a Bertrand conjugate, where σ = σ(s) denotes the arc-length parameter of β.
Taking covariant derivative in (3.24) and using the Frenet equations we obtain

Nβ(σ(s)) = −εε2cg(a)α(s) + εf(a)Nα(s), ε = ±1.(3.25)

Then the principal normal geodesic starting at a point β(σ0), σ0 = σ(s0), is
given by

γ(t) = f(t)β(σ0) + g(t)Nβ(σ0) = f(t+ εa)α(s0) + g(t+ εa)Nα(s0),
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which is nothing but a reparametrization of the principal normal geodesic start-
ing at α(s0). That concludes the proof. �

Proposition 6. Let α be a twisted non-null curve in M
3
q(c). Then the following

conditions are equivalent:

a) α is a helix.

b) α has infinite Bertrand conjugate curves.

c) α has two Bertrand conjugate curves.

Proof. a) ⇒ b) Let us assume that κα and τα are non-zero constants. Then
it is very easy to see that there are infinite pairs of constants (λ, µ) such that
λκα + µτα = 1; but for each different linear relationship we can construct a
different Bertrand conjugate curve, which is also a helix.

b) ⇒ c) Nothing to prove.
c) ⇒ a) If α has two Bertrand conjugate curves β1 and β2, then we can find

four constants a1 6= 0, a2 6= 0, θ1 and θ2 such that

ε1
g(a1)

f(a1)
κα(s) + ε3

g(a1)ϕ(θ1)

f(a1)η(θ1)
τα(s) = 1,

ε1
g(a2)

f(a2)
κα(s) + ε3

g(a2)ϕ(θ2)

f(a2)η(θ2)
τα(s) = 1,

where a1 6= a2 because of β1 and β2 are two different Bertrand conjugate curves.
By taking covariant derivative in these equations we obtain

ε1κ
′

α(s) + ε3
ϕ(θ1)

η(θ1)
τ ′α(s) = 0,

ε1κ
′

α(s) + ε3
ϕ(θ2)

η(θ2)
τ ′α(s) = 0.

Therefore, κ′
α(s) = τ ′α(s) = 0, that is, α has both constant curvature and

constant torsion. That concludes the proof. �

3.1. Some examples

We have seen that plane curves and helices are Bertrand curves; in fact, we
have shown that these curves are the only ones with infinite Bertrand conjugate
curves (see Propositions 4 and 6). On the other hand, from Theorem 5 we
deduce that any curve with constant curvature is also a Bertrand curve.

Example 1 (Euler spirals or Clothoids). We present a 4-parametric family
of Bertrand curves with non-constant curvature and non-constant torsion (see
[15] and references therein). A curve α = α(s) in M

3
q(c) is said to be an Euler

spiral (or Clothoid or Cornu spiral) if both its curvature and torsion evolve
linearly along the curve. Thus, there exist constants κ0, τ0, γ, δ such that

κ(s) = κ0 + γs, τ(s) = τ0 + δs.

It is easy to see that an Euler spiral is a Bertrand curve provided that κ0δ −
τ0γ 6= 0.
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Example 2 (n-Clothoids). As a generalization of classical Clothoid, we define
the n-Clothoid (or Clothoid of degree n) in M

3
q(c) as the curve whose curvature

and torsion are given by

κ(s) = κ0 + γsn, τ(s) = τ0 + δsn,

where κ0, τ0, γ and δ are constants (see [14]). As before, it is very easy to see
that n-Clothoids are Bertrand curves provided that κ0δ − τ0γ 6= 0.

Example 3 (Generalized conical helices). A twisted curve α = α(s) in M
3
q(c)

with non constant curvatures is said to be a conical helix if both the curvature
radius 1/κ and the torsion radius 1/τ evolve linearly along the curve. Thus,
there exist constants r0, r1, γ 6= 0 and δ 6= 0, such that

κ(s) =
γ

s+ r0
, τ(s) =

δ

s+ r1
.

In the particular case where r0 and r1 vanishes, the curve is called an standard
conical helix. Now we are going to slightly generalize that definition. A twisted
curve α = α(s) in M

3
q(c) is said to be a generalized conical helix if there exist

constants r0, r1, γ 6= 0, γ0, δ 6= 0 and δ0, such that

κ(s) =
γ

s+ r0
+ γ0, τ(s) =

δ

s+ r1
+ δ0.

Then it is easy to see that α is a Bertrand curve provided that r0 = r1 and
δγ0 − γδ0 6= 0.

Example 4 (General helices). We know that a twisted curve α in S
3 is a

general helix if there exists a constant b such that τ = bκ ± 1 (see [2]), then
it is a Bertrand curve provided that b 6= 0. A nice construction of this family
of curves is given in [2] by using the usual Hopf map π : S

3 → S
2(4). In

the Lorentzian case, the problem has been studied and solved in [4]; in this
case, the general helix is said to be degenerate or non-degenerate according to
its axis is a null or non-null vector, respectively. As in the spherical case, a
twisted curve α in H

3
1 is a general helix if there exists a constant b such that

τ = bκ ± 1. The general helix is degenerate if and only if b = ±1 and its
normal vector is spacelike. By using the semi-Riemannian Hopf submersions
πs : H

3
1 → H

2
s(−4), s = 0, 1, the authors prove that a non-null curve in H

3
1 is a

non-degenerate general helix if and only if it is a geodesic in some Hopf cylinder.
The definition and basic properties of pseudo-Riemannian submersions πs are
given in [3]. In what follows, we present in a unified way the construction of
general helices given in [2] and [4].

Let M
2
s(4c), s = 0, 1, denote the 2-dimensional sphere S

2(4) or the 2-
dimensional hyperbolic plane H

2
s(−4), s = 0, 1, according to c > 0 or c < 0,

respectively. Let us consider πqs : M3
q(c) → M

2
s(4c) the usual Hopf map, which

is a Riemannian or semi-Riemannian submersion. Therefore, for any point
p ∈ M

3
q(c) the tangent space TpM

3
q(c) splits into the horizontal plane (which is

isometric to Tπqs(p)M
2
s(4c)) and the vertical line (which is the tangent line to
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the fiber through p). Let β : I → M
2
s(4c) be a unit speed curve in M

2
s(4c) and

consider a horizontal lift β̄. The Hopf cylinder over β is defined as the total
lift Mβ = π−1

qs (β). It is not difficult to see that Mβ is a flat surface in M
3
q(c)

and can be parametrized by X : I × R → M
3
q(c) defined by

X(t, z) = f(z) β̄(t) + g(z) V (t),

where V is a unit vertical vector field, and functions f and g are given by
f(z) = cos z and g(z) = sin z when s = 0. In the case s = 1, the functions are
given by f(z) = cosh z and g(z) = sinh z.

Notice that t-curves are the horizontal lifts of β while z-curves correspond
to the fibers. Both families of curves are arclength parametrized and mutually
orthogonal; furthermore, they are geodesics in Mβ. Even more, every geodesic
in Mβ can be obtained as the image by X of a straight line in the (t, z)-plane.
Thus, if α = α(s) is a geodesic in Mβ, then there exist constants ai, bi such
that

α(s) = X(a1s+a2, b1s+b2) = cos(b1s+b2) β̄(a1s+a2)+sin(b1s+b2) V (a1s+a2).

It is shown in [2] and [4] that each general helix lying fully in S
3 or non-

degenerate a general helix lying fully in H
3
1 can be regarded as a geodesic in a

certain Hopf cylinder Mβ ⊂ M
3
q(c) over a curve β ⊂ M

2
s(4c). This provides a

beautiful method to construct a family of Bertrand curves in M
3
q(c).

A final remark. If α(s) is a general helix in S
3 or a non-degenerate general

helix in H
3
1 with Frenet frame {Tα, Nα, Bα}, then an axis is given by ([2], [4]):

f(θ)Tα(s) + g(θ)Bα(s),

for a certain constant θ, where f and g are the functions defined above. Since
α(s) is a Bertand curve, there exists a conjugate β(σ), so that equation (3.12)
holds. Then we deduce that the unit tangent vector Tβ is parallel (in R

4
v) to

the axis of the general helix α.

Example 5 (Degenerate general helices). We know that a non-null curve in
H

3
1 is a degenerate general helix if and only if τ = ±κ±1 and its normal vector

is spacelike, [4]. It is also shown in [4] that degenerate general helices in H
3
1 can

be obtained as geodesics in some flat B-scroll over a null curve as follows. Let
β be a curve in H

3
1 with curvature κ and torsion τ satisfying that τ = κ + ε1

(ε1 = 〈β′, β′〉) and the normal vector Nβ of β is spacelike (the other cases are
similar). We define the null curve α in H

3
1 by the equation

α(s) = β(s)−
1

2
s(Tβ(s)−Bβ(s)).

It is not difficult to see that the Cartan frame {A,B,C} along α is given by
(see [12])

A(s) = −
ε1
2
sβ(s) +

1

2
(Tβ(s) +Bβ(s)) +

ε1
2
sNβ(s),

B(s) = −ε1(Tβ(s)−Bβ(s)),
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C(s) = −
1

2
s(Tβ(s)−Bβ(s)) +Nβ(s).

Let Sα,B be the flat B-scroll in H
3
1 parametrized by X(s, t) = α(s) + tB(s).

Then it is clear that β(s) = X(s,− ε1
2 s) and so β is a geodesic of that B-scroll.

4. Null Bertrand curves

Definition 3. A null curve α with non-zero first curvature is said to be a null

Bertrand curve if there exists another null curve β = β(σ) : J ⊂ R → M
3
1(c),

β 6= ±α, and a one-to-one correspondence between α and β (i.e., a map s ∈
I → σ(s) ∈ J), such that both curves have common principal normal geodesics
at corresponding points. We will said that β is a null Bertrand mate (or null
Bertrand conjugate) of α; the curves α and β are called a pair of null Bertrand
curves.

Let α(s) and β(σ) be a pair of null Bertrand curves, then there exists a
differentiable function a(s) such that

(4.26) β(σ(s)) = γα
s (a(s)) = f(a(s))α(s) + g(a(s))Wα(s),

where {Lα,Wα, Nα} denotes the Frenet frame along α and β(σ(s)) is the point
in β corresponding to α(s).

Proposition 7. Let α and β be a pair of null Bertrand curves in M
3
1(c). Then

the function a(s) is a non-zero constant.

Proof. Since α and β have common principal normal geodesics at corresponding
points, we have

d

dt

∣

∣

∣

∣

t=a(s)

γα
s (t) = εWβ(σ(s)), ε = ±1.

By using that f ′ = −cg and g′ = f , we obtain

(4.27) Wβ(σ(s)) = −εcg(a(s))α(s) + εf(a(s))Wα(s),

where {Lβ,Wβ , Nβ} denotes the Frenet frame along β(σ). On the other hand,
the tangent vector to β is given by

d

ds
β(σ(s)) = a′(s)f ′(a(s))α(s) + (f(a(s))− g(a(s))κα

2 (s))Lα(s)

+ a′(s)g′(a(s))Wα(s) + g(a(s))κα
1 (s)Nα(s).(4.28)

But d
ds
β(σ) = σ′(s)Lβ(σ(s)) and then, from (4.27) and (4.28), we have

0 =

〈

d

ds
β(σ),Wβ(σ)

〉

= εa′(s)(f(a)2 + cg(a)2) = εa′(s),

and the proof finishes. �

In the following result we characterize null Bertrand curves in M
3
1(c).
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Proposition 8. Let α = α(s) and β = β(σ) be a pair of null Bertrand curves in

M
3
1(c). Then there exist two constants a and b such that the following relations

hold:

(i) κα
1 (s)κ

β
1 (σ(s)) =

(

b

g(a)

)2

.

(ii) κα
2 = κβ

2 =
f(a)

g(a)
.

Proof. Since a is constant, from (4.28) we deduce

(4.29)
d

ds
β(σ(s)) = (f(a)− g(a)κα

2 (s))Lα(s) + g(a)κα
1 (s)Nα(s),

and then

0 =

〈

d

ds
β(σ(s)),

d

ds
β(σ(s))

〉

= −(f(a)− g(a)κα
2 (s))g(a)κ

α
1 (s).

Since g(a)κα
1 is non-zero, we deduce that κα

2 (s) = f(a)
g(a) is constant. From

here and (4.29) we get σ′(s)Lβ(σ(s)) = g(a)κα
1 (s)Nα(s), hence there exists a

non-zero function b(s) such that

(4.30) Lβ(σ(s)) = b(s)Nα(s), b(s) =
g(a)κα

1 (s)

σ′(s)
,

and then

(4.31) Nβ(σ(s)) =
1

b(s)
Lα(s).

Since {Lα,Wα, Nα} and {Lβ,Wβ , Nβ} are positively oriented, from (4.27),
(4.30) and (4.31) we deduce ε = −1. By taking derivative in (4.27) we ob-
tain

(4.32)
d

ds
Wβ(σ(s)) = (cg(a) + f(a)κα

2 (s))Lα(s)− f(a)κα
1 (s)Nα(s),

but we also have

(4.33)

d

ds
Wβ(σ(s)) = σ′(s)

d

dσ
Wβ(σ(s))

= −σ′(s)κβ
2 (σ(s))Lβ(σ(s)) + σ′(s)κβ

1 (σ(s))Nβ(σ(s)).

Combining equations (4.30) to (4.33) we deduce

σ′(s)κβ
1 (σ(s)) = (cg(a) + f(a)κα

2 (s))b(s),(4.34)

σ′(s)κβ
2 (σ(s))b(s) = f(a)κα

1 (s).(4.35)

Since b(s)σ′(s) = g(a)κα
1 (s), from (4.35) we deduce

κβ
2 (σ(s)) =

f(a)

g(a)
= κα

2 (s).
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Now we will prove that b(s) is constant. By taking derivative in (4.30) we get

d

ds
Lβ(σ(s)) = b′(s)Nα(s)− b(s)κα

2 (s)Wα(s) + cb(s)α(s),

but we also have

d

ds
Lβ(σ(s)) = σ′(s)

d

dσ
Lβ(σ(s)) = σ′(s)κβ

1 (σ(s))Wβ(σ(s)).

Last two equations jointly with (4.27) imply b′(s) = 0, showing that b is con-
stant. Now we use (4.34) and (4.35) to get (i). �

Proposition 9. Let α be a null curve in M
3
1(c). Then α is a null Bertrand

curve if and only if it has non-zero constant second curvature.

Proof. From Proposition 8(ii), we only need to prove the converse part. Let
us suppose that α has non-zero constant second curvature κα

2 . Let a be the
non-zero constant such that f(a)− κα

2 g(a) = 0 and take any non-zero constant
b. Let us define σ by the equation

σ(s) =
g(a)

b

∫

κα
1 (u)du.

Observe that σ is defined to fulfill the second relation in (4.30).
Let β = β(σ) be the null curve defined by

(4.36) β(σ(s)) = f(a)α(s) + g(a)Wα(s).

We are going to prove that β is a Bertrand conjugate. Taking covariant deriv-
ative in (4.36) and using Frenet equations we obtain

Lβ(σ(s)) = bNα(s).

Taking again covariant derivative here we get

g(a)

b
κα
1 (s)κ

β
1 (σ(s))Wβ(σ(s)) = bcα(s)− bκα

2Wα(s).

This equation implies

κα
1 (s)κ

β
1 (σ(s)) = ε

b2

g(a)2
, ε = ±1,(4.37)

Wβ(σ(s)) = ε(cg(a)α(s)− f(a)Wα(s)),(4.38)

Nβ(σ(s)) =
1

b
Lα(s).(4.39)

By using that Frenet frames are positively oriented we obtain ε = 1, then
from (4.26) and (4.27) the principal normal geodesic starting at a point β(σ0),
σ0 = σ(s0), is given by

γβ
σ0
(t) = f(t)β(σ0)+g(t)Wβ(σ0) = f(t+a)α(s0)+g(t+a)Wα(s0) = γα

s0
(t+a),

showing that null curves α and β have common principal normal geodesics.
That concludes the proof. �
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If we consider that our null curves are parametrized by the pseudo-arc length
parameter, then the first curvature is always constant and equal to 1. Then we
can state the following consequence.

Corollary 10. Let α be a null curve in M
3
1(c) parametrized by the pseudo-arc

length parameter with Cartan curvature κ. Then α is a null Bertrand curve if

and only if it is a null helix.
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