• Title/Summary/Keyword: Current source inverter

Search Result 557, Processing Time 0.025 seconds

Enhanced Voltage Gain Single-Phase Current-Fed qZ-Source Inverter (전압 이득이 향상된 단상 전류형 qZ-소스 인버터)

  • Shin, Hyun-Hak;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.305-311
    • /
    • 2013
  • This paper proposes a performance improvement of existing single-phase current-fed qZ-Source inverter. Voltage gain of the traditional voltage-fed full-bridge inverter and single-phase current-fed qZ-source inverter is only equal to or smaller than input voltage. The proposed inverter can obtain twice higher voltage gain than the single-phase current-fed qZ-Source inverter by adding an extra switch and a capacitor in the circuit. In addition, the proposed inverter shares the common ground between dc input and ac output voltage. Therefore, the proposed inverter can eliminate the possible ground leakage current problem when it is used for grid-tied photovoltaic inverter system. A 120 W prototype inverter is built and tested to verify performances of the proposed inverter.

Current-Type Nine-Switch Inverters

  • Dehghan, Seyed Mohammad;Mohamadian, Mustafa;Yazdian, Ali
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.146-154
    • /
    • 2010
  • In this paper two dual output current-type inverters are proposed. These inverters have been called a current source nines-witch inverter and a current-type z-source nine-switch inverter by the authors. The proposed inverters have two independent current source outputs. Compared to two independent current source inverters, the proposed converters are implemented with fewer semiconductor switches. Space vector modulation (SVM) is proposed for these converters. Simulation results show the validity and performance of the proposed inverters.

Delay Time Reliability of Analog and Digital Delay Elements for Time-to-Digital Converter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.103-106
    • /
    • 2010
  • In this paper, the delay times were evaluated to develop highly reliable time-to-digital converter(TDC) in analog and digital delay element structures. The delay element can be designed by using current source or inverter. In case of using inverter, the number of inverter has to be controlled to adjust the delay time. And in case of using current source, the current for charging and discharging is controlled. When the current source is used the delay time of the delay element is not sensitive with varying the channel width of CMOS. However, when the inverter is used the delay time is directly related to the channel width of CMOS. Therefore to obtain good reliability in TDC circuit the delay element using current source is more stable compared to inverter in the viewpoint of the variation of fabrication process.

Wide Frequency Current Source Inverter (광역 주파수 전류원형 인버터)

  • 전성즙;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.927-935
    • /
    • 1994
  • Detailed analysis of the commutation circuit of the proposed wide-frequency current source inverter is given. In this inverter a spike-limit circuit and a precommutation circuit are used. The spike-limit circuit is intended to limit spike voltage which is arising during commutation time in a current source inverter, and the precommutation circuit to reuse the energy which flows from main inverter to spike-limit circuit during commutation time to aid commutation. Thus voltage stress of main thyristor is minimized. Since this inverter can be made up of thyristors for phase control, it has some advantage in high voltage and high power application.

Embedded Switched-Inductor Z-Source Inverters

  • Nguyen, Minh-Khai;Lim, Young-Cheol;Chang, Young-Hak;Moon, Chae-Joo
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, a ripple input current embedded switched-inductor Z-source inverter (rESL-ZSI) and a continuous input current embedded switched-inductor Z-source inverter (cESL-ZSI) are proposed by inserting two dc sources into the switched-inductor cells. The proposed inverters provide a high boost voltage inversion ability, a lower voltage stress across the active switching devices, a continuous input current and a reduced voltage stress on the capacitors. In addition, they can suppress the startup inrush current, which otherwise might destroy the devices. This paper presents the operating principles, analysis, and simulation results, and compares them to the conventional switched-inductor Z-source inverter. In order to verify the performance of the proposed converters, a laboratory prototype was constructed with 60 $V_{dc}$ input to test both configurations.

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema;Singh, Dheerendra;Bansal, Hari Om
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1351-1365
    • /
    • 2019
  • This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.

Study on Grid-Connected Photovoltaic System using Current-Source Inverter (전류형 인버터를 이용한 계통 연계형 태양광 발전 시스템에 관한 연구)

  • Lim, J.M.;Park, S.J.;Lee, S.H.;Moon, C.J.;Choi, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.677-681
    • /
    • 2005
  • This Paper presents a 6 pulse shift operation control mode of current-source-inverter to make improvement of efficiency and to reduce the frequency of inverter switching for photovoltaic generation system using PWM current-source-inverter. This system is connected solar cell energy directly without using a storage cell. The proposed circuit can maintain maximum voltage of photovoltaic generation of take advantage of six Buck-Boost converter and a full-bridge inverter determines the polarity of AC output. That is controlled by using digital signal processor TMS320F2812 for operation about a 6 pulse shift operation control of current-source-inverter, and it is verified through the experimental results.

  • PDF

24 Pulse Current Source Inverter For Reducing the Harmonics in Output Currents (출력전류의 고조파 저감을 위한 24펄스 전류형 인버어터)

  • 유철로;이공희;이성룡;한우용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.24-31
    • /
    • 1992
  • A 24 pulse current source inverter for reducing the harmonics in output currents is presented in this paper. The proposed system operates a 24 pulse inverter by adding only tap changing circuit which consists of several taps and static switching elements to the 12 pulse inverter, which is the double connected 3 phase 6 pulse inverter with an auto transfomer. Also to optimize the effectiveness of the harmonic reduction, the optimum turn ratio and tap changing control angle of auto transfomer are decided by digital simulation and its validity is verified with experiment. And under the optimum condition, it is clarified that the harmonics components involved in the output current of the proposed inverter are nearly equal to those of the conventional 24 pulse inverter.

  • PDF

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF

Maximum Power Point Tracking Control of Photovoltaic System by using Current Solar Cell (태양전지 전류에 의한 계통연계형 태양광발전시스템의 최대출력 제어법)

  • 박인덕;성낙규;김대균;이승환;오봉환;김성남;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.109-112
    • /
    • 1998
  • A step down chopper and PWM current source inverter is used for the connection between the PV array and the utility. This paper proposes chopper is controlled for the dc reactor decrease and PWM current source inverter is controlled to keep the output power at the maximum point for the PV. The PV current only is measured and employed for the power calculation combining the control parameter of the PWM current source inverter.

  • PDF