Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.6.1351

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple  

Bharatkumar, Dave Heema (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science)
Singh, Dheerendra (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science)
Bansal, Hari Om (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science)
Publication Information
Journal of Power Electronics / v.19, no.6, 2019 , pp. 1351-1365 More about this Journal
Abstract
This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.
Keywords
Coupled inductor; Current ripple; Split voltage sources; Voltage gain; Voltage overshoot; Z-source inverter;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. Qian, F. Z. Peng, and H. Cha, “Trans-Z-source inverters,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011.   DOI
2 A. Hakemi, M. Sanatkar-Chayjani, and M. Monfared, "$\Delta$-source impedance network," IEEE Trans. Ind. Electron., Vol. 64, No. 10, pp. 7842-7851, Oct. 2017.   DOI
3 Y. P. Siwakoti, P. C. Loh, F. Blaabjerg, and G. E. Town, “Y-source impedance network,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3250-3254, Jul. 2014.   DOI
4 M. K. Nguyen, T. V. Le, S. J. Park, and Y. C. Lim, “A class of quasi-switched boost inverters,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1526-1536, Mar. 2015.   DOI
5 X. Zhu, B. Zhang, and D. Qiu, "Enhanced boost quasi-Z-source inverters with active switched-inductor boost network," IET Power Electron., Vol. 11, No.11, pp. 1774-1787, Aug. 2018.   DOI
6 E. S. Asl, E. Babaei, M. Sabahi, M. Hasan, B. Nozadian, and C. Cecati, “New half-bridge and full-bridge topologies for a switched-boost inverter with continuous input current,” IEEE Trans. Ind. Electron., Vol. 65, No. 4, pp. 3188-3197, Apr. 2018.   DOI
7 A. Ahmad, V. K. Bussa, S. Member, R. K. Singh, S. Member, and R. Mahanty, "Switched-boost-modified Z-source inverter topologies with improved voltage gain capability," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 6, No. 4, pp. 2227-2244, Dec. 2018.   DOI
8 C. J. Gajanayake, F. L. Luo, H. Gooi, P. L. So, and L. K. Siow, “Extended-boost Z -source inverters,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2642-2652, Oct. 2010.   DOI
9 H. Fathi and H. Madadi, “Enhanced-boost z-source inverters with swicthed Z-impedance,” IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 691-703, Feb. 2016.   DOI
10 V. Jagan, S. Member, J. Kotturu, S. Member, and S. Das, "Enhanced-boost quasi-Z-source inverters with two-switched impedance networks," IEEE Trans. Ind. Electron., Vol. 64, No. 9, pp. 6885-6897, Sep. 2017.   DOI
11 A.-V. Ho, T.-W. Chun, and H.-G. Kim, “Extended boost active switched capacitor/switched inductor quasi-Z-source inverters,” IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5681-5690, Oct. 2015.   DOI
12 A. Ho and T. Chun, "Topologies of active-switched quasi-Z-source inverters with high-boost capability," J. Power Electron., Vol. 16, No. 5, pp. 1716-1724, Sep. 2016.   DOI
13 Y. Gu, Y. Chen, and B. Zhang, "Enhanced-boost quasi-Z-source inverter with an active swicthed Z-network," IEEE Trans. Ind. Electron., Vol. 65, No. 10, pp. 8372-8381, Oct. 2018.   DOI
14 D. Sun, B. Ge, W. Liang, H. Abu-rub, and S. Member, "An energy stored quasi-Z-source cascade multilevel inverter-based photovoltaic power generation system," IEEE Trans. Ind. Electron., Vol. 62, No. 9, pp. 5458-5467, Sep. 2015.   DOI
15 O. Husev, C. Roncero-clemente, E. Romero-cadaval, D. Vinnikov, and T. Jalakas, "Three-level three-phase quasi-Z-source neutral-point-clamped inverter with novel modulation technique for photovoltaic application," Electr. Power Syst. Res., Vol. 130, pp. 10-21, Sep. 2016.   DOI
16 D. Sun, B. Ge, X. Yan, D. Bi, and H. Zhang, "Modeling, impedance design, and efficiency analysis of quasi- Z source module in cascaded multilevel photovoltaic power system," IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 6108-6117, Nov. 2014.   DOI
17 O. Husev, C. Roncero-clemente, E. Romero-cadaval, D. Vinnikov, and S. Stepenko, “Single phase three-level neutral-point-clamped quasi-Z-source inverter,” IET Power Electron., Vol. 8, No. 1, pp. 1-10, 2015.   DOI
18 M. Aleenejad and R. Ahmadi, "Fault-tolerant multilevel cascaded H-bridge inverter using impedance-sourced network," IET Power Electron., Vol. 9, pp. 2186-2195, May 2016.   DOI
19 B. Ge, Y. Liu, H. Abu-rub, and F. Z. Peng, "State-of-charge balancing control for a battery-energy-stored quasi-Z-source cascaded-multilevel-inverter-based photovoltaic power system," IEEE Trans. Ind. Electron., Vol. 65, No. 3, pp. 2268-2279, Mar. 2018.   DOI
20 M. Aleenejad, H. Mahmoudi, and R. Ahmadi, “A fault-tolerant strategy based on fundamental phase-shift compensation for three-phase multilevel converters with quasi-Z-source networks with discontinuous input current,” IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7480-7488, Nov. 2016.   DOI
21 M. Nguyen and T. Tran, "Quasi cascaded h-bridge five-level boost inverter," IEEE Trans. Ind. Electron., Vol. 64, No. 11, pp. 8525-8533, Nov. 2017.   DOI
22 A. K. Chauhan and S. K. Singh, “Integrated dual-output L-Z source inverter for hybrid electric vehicle,” IEEE Trans. Transp. Electrif., Vol. 4, No. 3, pp. 732-743, Sep. 2018.   DOI
23 C. H. F. Inverter and A. Ho, "Single-phase modified quasi-Z-source cascaded hybrid five-level inverter," IEEE Trans. Ind. Electron., Vol. 65, No. 6, pp. 5125-5134, Jun. 2018.   DOI
24 L. Pan, “L-Z-source inverter,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6534-6543, Dec. 2014.   DOI
25 V. K. Bussa, R. K. Singh, and R. Mahanty, "Extendable multicell improved L-Z-source inverter," IEEE Transp. Electrif. Conf., Vol. 1, 2017.
26 D. Singh and A. K. Akkarapaka, "DSP based IFO control of HEV fed through impedance source inverter,"Annu. IEEE India Conf., pp. 1-6, 2013.
27 A. K. Akkarapaka and D. Singh, "An IFOC-DSVPWM based DC-link voltage compensation of Z-source inverter fed induction motor drive for EVs," Adv. Power Electron., Vol. 2015, pp. 1-14, Jun. 2015.   DOI
28 C.-T. Pham, A. Shen, P. Q. Dzung, N. B. Anh, and N. X. Phu, "A comparison of control methods for Z-source inverter," Energy Power Eng., Vol. 4, No. 4, pp. 187-195, Jul. 2012.   DOI
29 A. K. Akkarapaka and D. Singh, "The IFOC based speed control of induction motor fed by a high performance Z-source inverter," Proc. IEEE Conf. Renew. Energy Res. Appl., pp. 539-543, 2014.
30 J. O. S. Xuan, K. Y. S. Khan, L. K. Haw, W. N. P. Qin, and M. Dahidah, "CCM and DCM analysis of quasi-Z-source inverter," in IEEE Conference on Energy Conversion (CENCON), pp. 4-9, 2017.
31 M. Nguyen, Y. Lim, Y. Chang, and C. Moon, “Embedded switched-inductor Z-source inverters,” J. Power Electron., Vol. 13, No. 1, pp. 9-19, Jan. 2013.   DOI
32 F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar. 2003.   DOI
33 J. Anderson and F. Z. Peng, "Four quasi-Z-Source inverters," PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., pp. 2743-2749, 2008.
34 P. C. Loh, F. Gao, and F. Blaabjerg, “Embedded EZ-source inverters,” IEEE Trans. Ind. Appl., Vol. 46, No. 1, pp. 256-267, Jan. 2010.   DOI
35 A. Battiston, E.-H. Miliani, S. Pierfederici, and F. Meibody-Tabar, “A novel quasi-Z-source inverter topology with special coupled inductors for input current ripples cancellation,” IEEE Trans. Power Electron., Vol. 31, No. 3, pp. 2409-2416, Mar. 2016.   DOI
36 M. Zhu, K. Yu, and F. L. Luo, “Switched inductor Z-Source inverter,” IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2150-2158, Aug. 2010.   DOI
37 M. Nguyen, Y. Lim, and G. Cho, “Switched-inductor quasi-Z-source inverter,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3183-3191, Nov. 2011.   DOI
38 Y.-C. Lim, M.-K. Nguyen, and J.-H. Choi, “Two switched-inductor quasi-Z-source inverters,” IET Power Electron., Vol. 5, No. 7, pp. 1017-1025, Apr. 2012.   DOI
39 K. Deng, J. Zheng, and J. Mei, “Novel switched-inductor quasi-Z-source inverter,” J. Power Electron., Vol. 14, No. 1, pp. 11-21, Jan. 2014.   DOI
40 Z. Inverter, A. Bakeer, M. A. Ismeil, M. Orabi, and I. S. Member, "A modified two switched-inductors quasi Z-source inverter," 2015 IEEE Appl. Power Electron. Conf. Expo., pp. 1693-1699, 2015.
41 R. Strzelecki, M. Adamowicz, N. Strzelecka, and W. Bury, "New type T-source inverter," 2009 Compat. Power Electron., pp. 191-195, 2009.
42 M. Abbasi, A. H. Eslahchi, and M. Mardaneh, “Two symmetric extended-boost embedded switched-inductor quasi-Z-source inverter with reduced ripple continuous input current,” IEEE Trans. Ind. Electron., Vol. 65, No. 6, pp. 5096-5104, Jun. 2018.   DOI
43 H. F. Ahmed, H. Cha, S. Kim, H. Kim, and S. Member, “switched-coupled-inductor quasi-Z-source inverter,” IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1241-1254, Feb. 2016.   DOI
44 S. Sharifi, M. Monfared, and S. Member, "Modified series and tapped switched- coupled-inductors quasi-Z-source networks," IEEE Trans. Ind. Electron., Vol. 66 No. 8, pp. 5970-5978, Sep. 2018.   DOI