• Title/Summary/Keyword: Cu via

Search Result 413, Processing Time 0.026 seconds

Blind via Hole manufacturing technology using UV Laser (UV 레이저에 의한 블라인드 비아홀 가공)

  • 장정원;김재구;신보성;장원석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.160-163
    • /
    • 2002
  • Micro via hole Fabrication is studied by means of minimizing method to circuit size as many electric products developed to portable and minimize. Most of currently micro via hole fabrication using laser is that fabricate insulator layer using CO2 Laser after Cu layer by etching, or fabricate insulator layer using IR after trepanning Cu by UV. In this paper, it was performed that a metal layer and insulator layer were worked upon only one UV laser, and increase to processing speed by experiment.

  • PDF

Biased Thermal Stress 인가에 의한 TSV 용 Cu 확산방지막 Ti를 통한 Cu drift 측정

  • Seo, Seung-Ho;Jin, Gwang-Seon;Lee, Han-Gyeol;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.179-179
    • /
    • 2011
  • 관통전극(TSV, Trough Silicon Via) 기술은 전자부품의 소형화, 고성능화, 생산성 향상을 이룰 수 있는 기술이다. Cu는 현재 배선 기술에 적용되고 있고 전기적 저항이 낮아서 TSV filling 재료로 사용된다. 하지만 확산 방지막에 의해 완벽히 감싸지지 않는다면, Cu+은 빠르게 절연막을 통과하여 Si 웨이퍼로 확산된다. 이런 현상은 절연막의 누설과 소자의 오동작 등의 신뢰성 문제를 일으킬 수 있다. 현재 TSV의 제조와 열 및 기계적 응력에 관한 연구는 활발히 진행되고 있으나 Biased-Thermal Stress(BTS) 조건하의 Cu 확산에 관한 연구는 활발하지 않는 것이 실정이다. 이를 위해 본 연구에서는 TSV용 Cu 확산 방지막 Ti에 대해 Cu+의 drift 억제 특성을 조사하였다. 실험을 위해 Cu/확산 방지막/Thermal oxide/n-type Si의 평판 구조를 제작하였고 확산 방지막의 두께에 따른 영향을 조사하기 위해 Ti의 두께를 10 nm에서 100 nm까지 변화하였으며 기존 Cu 배선 공정에서 사용되는 확산 방지막 Ta와 비교하였다. 그리고 Cu+의 drift 측정을 위해 Biased-Thermal Stress 조건(Thermal stress: $275^{\circ}C$, Bias stress: +2MV/cm)에서 Capacitance 및 Timedependent dielectric breakdown(TDDB)를 측정하였다. 그 결과 Time-To Failure(TTF)를 이용하여 Cu+의 drift를 측정할 수 있었으며, 확산 방지막의 두께가 증가할수록 TTF가 증가하였고 물질에 따라 TTF가 변화하였다. 따라서 평판 구조를 이용한 본 실험의 Cu+의 drift 측정 방법은 향후 TSV 구조에서도 적용 가능한 방법으로 생각된다.

  • PDF

Cu Filling Characteristics of Trench Vias with Variations of Electrodeposition Parameters (Electrodeposition 변수에 따른 Trench Via의 Cu Filling 특성)

  • Lee, Kwang-Yong;Oh, Teck-Su;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.57-63
    • /
    • 2006
  • For chip-stack package applications, Cu filling characteristics into trench vias of $75{\sim}10\;{\mu}m$ width and 3 mm length were investigated with variations of electroplating current density and current mode. At $1.25mA/cm^{2}$ of DC mode, Cu filling ratio higher than 95% was obtained for trench vias of $75{\sim}35{\mu}m$ width. When electroplated at DC $2.5mA/cm^{2}$, Cu filling ratios became inferior to those processed at DC $1.25mA/cm^{2}$. Pulse current mode exhibited Cu filling characteristics superior to DC current mode.

  • PDF

Fabrication of Through-hole Interconnect in Si Wafer for 3D Package (3D 패키지용 관통 전극 형성에 관한 연구)

  • Kim, Dae-Gon;Kim, Jong-Woong;Ha, Sang-Su;Jung, Jae-Pil;Shin, Young-Eui;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.64-70
    • /
    • 2006
  • The 3-dimensional (3D) chip stacking technology is a leading technology to realize a high density and high performance system in package (SiP). There are several kinds of methods for chip stacking, but the stacking and interconnection through Cu filled through-hole via is considered to be one of the most advanced stacking technologies. Therefore, we studied the optimum process of through-hole via formation and Cu filling process for Si wafer stacking. Through-hole via was formed with DRIE (Deep Reactive ion Etching) and Cu filling was realized with the electroplating method. The optimized conditions for the via formation were RE coil power of 200 W, etch/passivation cycle time of 6.5 : 6 s and SF6 : C4F8 gas flow rate of 260 : 100 sccm. The reverse pulsed current of 1.5 A/dm2 was the most favorable condition for the Cu electroplating in the via. The Cu filled Si wafer was chemically and mechanically polished (CMP) for the following flip chip bumping technology.

Formation of Sn Through-Silicon-Via and Its Interconnection Process for Chip Stack Packages (칩 스택 패키지용 Sn 관통-실리콘-비아 형성공정 및 접속공정)

  • Kim, Min-Young;Oh, Taek-Soo;Oh, Tae-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.557-564
    • /
    • 2010
  • Formation of Sn through-silicon-via (TSV) and its interconnection processes were studied in order to form a three-dimensional interconnection structure of chip-stack packages. Different from the conventional formation of Cu TSVs, which require a complicated Cu electroplating process, Sn TSVs can be formed easily by Sn electroplating and reflow. Sn via-filling behavior did not depend on the shape of the Sn electroplated layer, allowing a much wider process window for the formation of Sn TSVs compared to the conventional Cu TSV process. Interlocking joints were processed by intercalation of Cu bumps into Sn vias to form interconnections between chips with Sn TSVs, and the mechanical integrity of the interlocking joints was evaluated with a die shear test.

Optimization of Reverse Engineering Processes for Cu Interconnected Devices

  • Koh, Jin Won;Yang, Jun Mo;Lee, Hyung Gyoo;Park, Keun Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.304-307
    • /
    • 2013
  • Reverse engineering of semiconductor devices utilizes delayering processes, in order to identify how the interconnection lines are stacked over transistor gates. Cu metal has been used in recent fabrication technologies, and de-processes becomes more difficult with the shrinking device dimensions. In this article, reverse engineering technologies to reveal the Cu interconnection lines and Cu via-plugs embedded in dielectric layers are investigated. Stacked dielectric layers are removed by $CF_4$ plasma etching, then the exposed planar Cu metal lines and via-plugs are selectively delineated by wet chemical solution, instead of the commonly used plasma-based dry etch. As a result, we have been successful in extracting the layouts of multiple layers within a system IC, and this technique can be applicable to other logic IC, analog IC, and CMOS IC, etc.

Thermal Performance Analysis for Cu Block and Dense Via-cluster Design of Organic Substrate in Package-On-Package

  • Lim, HoJeong;Jung, GyuIk;Kim, JiHyun;Fuentes, Ruben
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.91-95
    • /
    • 2017
  • Package-On-Package (PoP) technology is developing toward smaller form factors with high-speed data transfer capabilities to cope with high DDR4x memory capacity. The common application processor (AP) used for PoP devices in smartphones has the bottom package as logic and the top package as memory, which requires both thermally and electrically enhanced functions. Therefore, it is imperative that PoP designs consider both thermal and power distribution network (PDN) issues. Stacked packages have poorer thermal dissipation than single packages. Since the bottom package usually has higher power consumption than the top package, the bottom package impacts the thermal budget of the top package (memory). This paper investigates the thermal and electrical characteristics of PoP designs, particularly the bottom package. Findings include that via and dense via-cluster volume have an important role to lower thermal resistance to the motherboard, which can be an effective way to manage chip hot spots and reduce the thermal impact on the memory package. A Cu block and dense via-cluster layout with an optimal location are proposed to drain the heat from the chip hot spots to motherboard which will enhance thermal and electrical performance at the design stage. The analytical thermal results can be used for design guidelines in 3D packaging.

Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating (펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가)

  • Park, Eon-Woo;Moon, Hwan;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.

Cu-Filling Behavior in TSV with Positions in Wafer Level (Wafer 레벨에서의 위치에 따른 TSV의 Cu 충전거동)

  • Lee, Soon-Jae;Jang, Young-Joo;Lee, Jun-Hyeong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Through silicon via (TSV) technology is to form a via hole in a silicon chip, and to stack the chips vertically for three-dimensional (3D) electronics packaging technology. This can reduce current path, power consumption and response time. In this study, Cu-filling substrate size was changed from Si-chip to a 4" wafer to investigate the behavior of Cu filling in wafer level. The electrolyte for Cu filling consisted of $CuSO_4$ $5H_2O$, $H_2SO_4$ and small amount of additives. The anode was Pt, and cathode was changed from $0.5{\times}0.5cm^2$ to 4" wafer. As experimental results, in the case of $5{\times}5cm^2$ Si chip, suitable distance of electrodes was 4cm having 100% filling ratio. The distance of 0~0.5 cm from current supplying location showed 100% filling ratio, and distance of 4.5~5 cm showed 95%. It was confirmed good TSV filling was achieved by plating for 2.5 hrs.