• Title/Summary/Keyword: Core-Chip

Search Result 345, Processing Time 0.027 seconds

SoC Emulation in Multiple FPGA using Bus Splitter

  • Wooseung Yang;Lee, Seung-Jong;Ando Ki;Kyung, Chong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.859-862
    • /
    • 2003
  • This paper proposes an emulation environment for SoC designs using small number of large gate-count FPGA's and a PC system. To overcome the pin limitation problem in partitioning the design when the design size overwhelms the FPGA gate count, we use bus splitter modules that replicate on-chip bus signals in one FPGA to arbitrary number of other FPGA's with minimal pin count. The proposed scheme is applied to the emulation of 2 million gate multimedia processing chip using two Xilinx Viretex-2 6000 FPGA devices in 6.6MHz operating frequency. An ARM core, memories, camera and LCD display are modeled in software using dual 2GHz Pentium-III processors. This scheme can be utilized for more than 2 FPGA's in the same ways as two FPGA case without losing emulation speed.

  • PDF

Resuable Design of 32-Bit RISC Processor for System On-A Chip (SOC 설계를 위한 저전력 32-비트 RISC 프로세서의 재사용 가능한 설계)

  • 이세환;곽승호;양훈모;이문기
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.105-108
    • /
    • 2001
  • 4 32-bit RISC core is designed for embedded application and DSP. This processor offers low power consumption by fully static operation and compact code size by efficient instruction set. Processor performance is improved by wing conditional instruction execution, block data transfer instruction, multiplication instruction, bunked register file structure. To support compact code size of embedded application, It is capable cf executing both 16-bit instructions and 32-bit instruction through mixed mode instruction conversion Furthermore, for fast MAC operation for DSP applications, the processor has a dedicated hardware multiplier, which can complete a 32-bit by 32-bit integer multiplication within seven clock cycles. These result in high instruction throughput and real-time interrupt response. This chip is implemented with 0.35${\mu}{\textrm}{m}$, 4- metal CMOS technology and consists of about 50K gate equivalents.

  • PDF

Design of SIMD-DSP/PPU for a High-Performance Embedded Microprocessor (고성능 내장형 마이크로프로세서를 위한 SIMD-DSP/FPU의 설계)

  • 정우경;홍인표;이용주;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.388-397
    • /
    • 2002
  • We designed a SIMD-DSP/FPU that can efficiently improve multimedia processing performance when integrated into high-performance embedded microprocessors. We proposed partitioned architectures and new schemes for several functional units to reduce chip area. Sharing functional units reduces the area of FPU significantly. The proposed architecture is modeled in HDL and synthesized with a 0.35$\mu\textrm{m}$ standard cell library. The chip area is estimated to be about 100,000 equivalent gates. The designed unit can run at higher than 50MHz clock frequency of CPU core under the worst-case operating conditions.

Advanced JTAG-based On-Chip Debugging Unit Design for SoC

  • Yun Yeonsang;Kim Seungyoul;Kim Youngdae;You Younggap
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.61-65
    • /
    • 2004
  • An on-chip debugging unit is proposed aiming performance enhancement of JTAG-based SoC systems. The proposed unit comprises a JTAG module and a core breaker. The IEEE 1149.1 standard has been modified and applied to the new JTAG module. The proposed unit eliminates redundant clock cycles included in the TAP command execution stage reducing overall debugging time. TAP execution commands are repeatedly issued to perform debugging of complicated SoC systems. Simulation on the proposed unit shows some $14\%$ performance enhancement and $50\%$ gate count reduction compared to the conventional ones.

  • PDF

Design and Implementation of Hardware for various vision applications (컴퓨터 비전응용을 위한 하드웨어 설계 및 구현)

  • Yang, Keun-Tak;Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.156-160
    • /
    • 2011
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for pattern recognition to use in embedded applications. The target Soc consists of LEON2 core, AMBA/APB bus-systems and custom-designed accelerators for Gaussian Pyramid construction, lighting compensation and histogram equalization. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, a pattern recognition application is performed.

A Piezoelectric Energy Harvester with High Efficiency and Low Circuit Complexity

  • Do, Xuan-Dien;Nguyen, Huy-Hieu;Han, Seok-Kyun;Ha, Dong Sam;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • This paper presents an efficient vibration energy harvester with a piezoelectric (PE) cantilever. The proposed PE energy harvester increases the efficiency through minimization of hardware complexity and hence reduction of power dissipation of the circuit. Two key features of the proposed energy harvester are (i) incorporation synchronized switches with a simple control circuit, and (ii) a feed-forward buck converter with a simple control circuit. The chip was fabricated in $0.18{\mu}m$ CMOS processing technology, and the measured results indicate that the proposed rectifier achieves the efficiency of 77%. The core area of the chip is 0.2 mm2.

Design and Implementation of ARM based Network SoC Processor (ARM 기반의 네트워크용 SoC(System-on-a-chip) 프로세서의 설계 및 구현)

  • 박경철;박영원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.440-445
    • /
    • 2004
  • The design and implementation of a Network Processor using System-on-a-chip(SoC) technology is presented. The proposed network processor can handle several protocols as well as various types of traffics simultaneously. The proposed SoC consists of ARM processor core, ATM block, AAL processing block, Ethernet block and a scheduler. The scheduler guarantees QoS of the voice traffic and supports multiple AAL2 packet. The SoC is manufactured on the 0.35 micron fabrication line of HYNIX semiconductor, the total number of gates is about 312,000, for a maximum operating frequency of over to 50㎒.

A High Density Memory Device for Next Generation Low-Voltage and High-Speed Operations (차세대 저 전압, 고속 동작 요구에 대응하는 대용량 메모리의 개발)

  • 윤홍일;이현석;유형식;천기철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.3-5
    • /
    • 2000
  • 1.8V,4Gb DDR SDRAM설계 및 제작을 수행하였다. DRAM동작 시 발생하는 Bit Line간 CouplingNoise를 보상하기 위한 Twisted Open Bit Line 구조를 제안하였다. Low Voltage Operation으로 인한 Bit Line Sense Amplifier 의 동작 저하를 보상하기 위한 BL S/A Pre-Sensing 방식 및 Reference Bit Line Voltage Calibration 구조를 제안하였다. Chip면적 증가로 인한 동작속도 감소의 보상을 위해 Repeater Driver 구조를 Core 및 Periphery Circuit에 적용하여 동작 대비 Chip 면적의 증가를 최소화 하도록 하였다.

  • PDF

The optimal design by Micro On-Off Valve analysis (Micro On-Off Valve 해석에 의한 최적 설계)

  • Kim D.S.;Park S.W.;Koh C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.285-290
    • /
    • 2005
  • Micro On-Off valves are currently recognized as the core technology in the fields of the micro fluid chip fur medical applications and production lines of semi-conduct chip. Micro valves that operate by compressed air need the high-speed responsibility, repeatability, the absorbability and the uniform pressure by the poppet. In this study, Micro On-Off valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

A Study on the Logic Design of Multi-Display Driver (멀티 디스플레이 구동 드라이버 로직 설계에 관한 연구)

  • Jin K.C.;Chun K.J.;Kim S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.212-215
    • /
    • 2005
  • The needs of larger screen in mobile device would be increased as the time of ubiquitous and convergence is coming. And, the type of mobile device has been evolved from bar, slide to row. Recently, the study on the multi-display screen which has seamless gap between two display panel has been published, and moreover the System On Chip(SOC) design strategy of core chip has been the most promising Field-Programmable Gate Array(FPGA) technology in the display system. Therefore, in this paper, we proposed the design technique of SOC and evaluated the effectiveness with Very high speed Hardware Description Language(VHDL) Intellectual Property (IP) for the operation of multi display device driver. Also, This IP design would be to allow any kind of user interface in control system.

  • PDF