t

ol

BRZe

o
x

O
it

2003 CH

o

r

=38 =28 H26H WS

SoC Emulation in Multiple FPGA using Bus Splitter

Wooseung Yang!, Seung-Jong Lee?, Ando Ki? and Chong-Min Kyung?
1Dept. of EECS, KAIST,
woosee@duo.kaist.ac.kr, kyung@ee kaist.ac.kr
2R&D Center, Dynalith Systems Co. Ltd.
{sjlee,adki}@dynalith.com

Abstract

This paper proposes an emulation environment for SoC
designs using small number of large gate-count FPGA's
and a PC system. To overcome the pin limitation problem
in partitioning the design when the design size overwhelms
the FPGA gate count, we use bus splitter modules that repli-
cate on-chip bus signals in one FPGA to arbitrary number
of other FPGA'’s with minimal pin count.

The proposed scheme is applied to the emulation of 2
million gate multimedia processing chip using two Xilinx
Viretex-2 6000 FPGA devices in 6.6MHz operating fre-
quency. An ARM core, memories, camera and LCD dis-
play are modeled in sofiware using dual 2GHz Pentium-IIT
processors. This scheme can be utilized for more than 2
FPGA'’s in the same ways as two FPGA case without losing
emulation speed.

1. Introduction

Most current SoC designs are composed of more than
one processor units, several memory blocks and large size
of logic design blocks. Since the design and verification of
the SoC is very difficult, it is a dominant trend to re-use
as many pre-verified components as possible [6, 11] and to
adopt well-defined on-chip bus specifications {1-4].

In manufacturing point-of-view, the NRE cost of the sil-
icon fabrication becomes higher and higher and the design
cycle time becomes shorter and shorter. So full-chip scale
emulation of the design or rapid system prototyping is un-
avoidable to increase the possibility to make the first silicon
work and enable hardware-software co-verification [9].

Most of large-scale emulation equipments have lots
of FPGA’s connected in regular interconnection networks
composed of dedicated routing resources or programmable
cross-bar switches [7, 10]. These approaches usually have
the problem of partitioning the design into small clusters

satisfying the computing resource constraints and the inter-
connection resource constraints. Another weak point is that
FPGA’s of most recent technology can not be utilized since
it takes lots of time and cost to build the whole emulator
system composed of many FPGA’s and even more complex
interconnections.

In the other extreme, one or a few leading-edge FPGA
components of over-hundreds of million gates and better
operating speed are used to emulate the whole design. This
approach is much faster in operating speed by the help of
advanced process technology and the simplified intercon-
nection among FPGA’s. Also, though using very expensive
FPGA components, they are relatively low cost because of
reduced complexity in the interconnection logics.

But these approaches usually transfer the burden of par-
titioning the design into several FPGA’s to users, so they
require manual partitioning and are not scalable to the num-
ber of used FPGA’s. This lack in scalability prohibits the
application in large size SoC design.

In this paper, we propose a novel scalable partitioning
method on the on-chip bus boundary. The remaining parts
of this paper composed of the following sections. The sec-
tion 2 describes the SoC design we are targeting to emulate
and surveys possible partitioning strategies. In section 3,
we propose a bus-splitting method based on the properties
of the on-chip bus standards. The section 4 shows the de-
sign of the proposed bus-splitter and its application in the
emulation of multimedia processing chip and conclusions
are made in the section 5.

2. Emulation target and partitioning strategies

Figure 1 shows a block diagram of typical SoC design
we are targeting to emulate which is based on a on-chip
bus standard; AMBA AHB bus system [1]. It is a multi-
media data processing chip composed of one ARM9 pro-
cessor core, several AHB IP’s related to the MPEG4 video
encoding/decoding, SDRAM memory controller and etc.

859

2003A 5 CHtMNZsts StASESEs =2F H26A WS

®
g

-

»

L 0]

382

|
l Aot Sla | nemeerd P2 [

oMA [y ot
Controller!

i
| 1ncerzupe |
| controllax| ~

3t

2| Camers
| controlle:

| AHB2ARR || —
-"‘ Bridge "'J"' controlle: ‘*

Figure 1. Example of SoC design using on-
chip bus standard

£
L
1l

To emulate this kind of design, i.e. designs contain-
ing a processor core or large memory modules that are not
mapped to FPGA devices, most hardware emulation equip-
ments adopt various co-verification methods connecting the
hardware part running in FPGA’s with an instruction set
simulator or a software model running in host computer. In-
stead of an instruction set simulator, a bus functional model
described in test bench description languages such as Vera
or TestBuilder may be used because instruction set simula-
tors require C or assembly coding to be completed and the
simulation speed is also relatively slow.

Figure 2 shows our test environment utilizing PC sys-
tem with PCT cards mounting FPGA devices. We translate
the bus functional models for the ARM processor described
in VERA into C codes that call pre-defined API functions
to access FPGA. The transactors in the FPGA’s receive the
requests generated by API functions and create suitable in-
terface signals for AHB bus, SDRAM controller, Camera
controller and LCD controller.

e

C API for

HiF:

"/1 n

‘
/ FPGA lc:e:.},l
P

|
|
|
{ gee | Cus X window|
{ |, Camera ' display
S — . J \ Jisplay |
QFI S T

—

T AHE aignals SORAM sigoals

Modules

N oy - - . S
BC . * TMemory JTCRMERR N, T LGB
! ARM Model | | _Mogel \ _Model , . _Model J
I . —_— ——
1(ecr HESS [pex 1[ec1
FPGA T T) "
| ARM l I Memery CAMERA [LD |
i TRANSACTOR | | TRANSACTOR TRANSACTOR | l TRANSACTOR |
: 111 :HHHDBIHZ_M 1
Shcea aigoals W0 sismaie] |
|

Other Design |
i

Figure 2. Emulation environment

Other parts of the design are mapped to FPGA’s. The
whole design cannot be mapped to the biggest FPGA com-

mercially available now.
In the next section, we will focus on partitioning on the
bus boundary.

3. Bus splitter

To send and receive bus signais in one FPGA to/from
other FPGA’s and utilize the limited pin resources effi-
ciently, we designed bus splitter modules. The basic idea
of the bus splitter is to utilize the properties of on-chip bus
standards.

In the following subsections we will describe the bus
splitter design focusing on AMBA AHB bus system. But
the principles can be applied to other on-chip bus standards.

3.1 Mastership

The first property is that, at any time instance, there
is only one bus master that initiate the bus transac-
tion and one bus slave that respond to the transac-
tion. If we know the mastership of the bus easily, we
can save lines that are not used in the current transac-
tion. Figure 3 shows this situation. A design com-
posed of three bus masters(M1, M2, M 3) and three bus
slaves(51, S2, S§3) are partitioned into two partitions(F'1 =
{M1,81,52}, F2 = {M2,M3,53}). For convenience,
we assume that arbiter and decoder logics belong to F'1.

Since M 2 and M 3 can not be active at the same time, we
only need to allocate one data bus and muitiplex the data
line from M2 and M3 inside the FPGA, to transmit data
from masters in F'2 to slaves in F'1.

1
ARB/DEC

Fo

M1 ; [] st

Figure 3. Splitting AMBA AHB bus system

3.2 Transaction Type

The second common property of on-chip bus standard is
that read-transaction and write-transaction can not occur at
the same time. So the read bus and write bus in on-chip bus
can be shared in one physical data bus when interconnecting

them off-chip. The tri-state buffers in Figure 3 controls the

860

20034 it NS5 stASEstells =28 H26d MIS

direction of data transfer according to the transaction type.

The number of pins required to bisect the system as
shown in Figure 3 can be represented as the following equa-
tion.

Plivect = a+
(b+c+2W)x (M — Mo+ 1)+
(d+e+W)x(S—So+1)

Pyygspiit = a+ 1
b (M — My + 1)+
d* (S-S +1)
ct+e+2W

where W = bus bit width
M = # of masters in the system
My = # of masters in the FPGAl(containing ar-
biter/decoder)
S = # of slaves in the system
So = # of slaves in the FPGA1(containing arbiter/decoder)
a = # of signals for global control
b = # of unsharable control signals from master
¢ = # of sharable control signals from master
d = # of unsharable control signals from slave
e = # of sharable control signals from slave

FPlirect 1s the pin count when all the pins are directly con-
nected and Py, ssp14¢ 18 the pin count when the bus splitter is
used. Parameters, a ~ e depends on the bus standard, and
for the case of AMBA AHB,a =6,b=2,¢c=13,d=1
and e = 3. Other parameters depend on the properties of
the target design. For the typical system where W = 32
and M — My = S — Sy = 4, total pin counts reduction is
82% (Pdirect = 581;Pbussplit = 101)

Notice that since parameter b and d is small enough,
Py sspiit is insensitive to the increase in the number of IP’s
in the design, whereas Py, .. is rapidly increased when the
design uses more IP’s.

3.3 Pipelined Bus

To further reduce the required pin counts, we use time-
shared multiplexing technique similar with virtual wire sys-
tem [5, 8]. When transferring many logical signals with
fewer physical lines, it is very important to schedule the
sequence of signal transfer according to the evaluation se-
quence of the combinational logic path. But, since most
on-chip bus standards are pipelined so that the bus opera-
tions(e.g. address and data phase) are divided into several
clock cycles, we don’t bother much about the dependency
in allocating the bus signals to physical lines.

Figure 4 shows one example of packing 32-bit version
of AMBA AHB bus signals into 32-bit data line. The rect-

angles marked A, D, M and S mean signals from arbiter,
decoder, current bus master and current bus slave. In the
first micro-cycle of the transfer, information on the current
bus master and bus request signals for the next transac-
tion from all master IP’s are passed. 32-bit address sig-
nals and other control signals for the current transaction
are driven by the current bus master in the next two micro-
cycles. The response signals for the previous bus transac-
tion are also driven by the slave in the third micro-cycle.
In the last micro-cycle, the data is transferred from mas-
ter to slave (write-transaction) or from slave to master(read-
transaction).

DELK HOWK 2 Mu 0 12 8 4 0

HHHEEHEA
HWDATAMRDATA

oI

Figure 4. Packing AMBA AHB bus signals into
four 32-bit structures

The packing width and depth can be varied according to
the limit of the physical data channels connecting FPGA’s
and the required operating frequency as far as the intra-
cycle combinational path dependency is satisfied. The only
combinational path spanning two modules in AMBA AHB
is HADDR — HSEL path.

4. Emulation Example

Figure 5 shows suggested emulation setup for the exam-
ple design in Figure 1. The ARM processor, two SDRAM
modules, camera and LCD display are modeled in software
as described in section 2. Other logic parts are mapped into
two FPGA devices mounted in PCI cards. The FPGA’s are
automatically configured by the software in PC whenever
the emulation is started. Three major modules in AHB1 bus
are mapped in FPGA1 and use 97% of the slice resources in
the FPGA. Other modules and transactors to communicate
with PC are mapped to FPGAO and use 70% of the slices.

The bus splitter is composed of two stages as shown in
Figure 6 based on the packing structure in Figure 4. The
first stage selects signals from currently active bus master
and slave. The next stage selectively drives the signal line in
time-shared manner only at required micro-cycle according
to the packing structure. Signals, el, €2, e3 and e4 indicate
micro-cycle 1 ~ 4.

Figure 7 shows three PCI cards mounting Xilinx Virtex2
6000 FPGA devices, installed in 33MHz PCI slots of Pen-

861

FRGAT(XC2VEODO)
97% slice usage

{35 physical pins
i operating with

6.8BMHz clock

Figure 5. Emulation environment for ARM-
based Multimedia SoC

othar centre: @1 €23 ed
sgnals [~ "f’ TV -
=

Figure 6. Bus splitter implementation

tium PC. Two of them are used in the emulation of design in
Figure 5. 80-pin SCSI cable is used to interconnect the PCI
cards. 32 signal lines are used to deliver the packed signals.
Additional four signal lines are used to exchange clock and
reset signals and other signal lines are used as ground.

In the emulation, MPEG4 coding/decoding test code
written in VERA code was used. Actual images captured
from the USB camera or stored in the hard disk of the PC
were fed to the FPGA and the decoded result was shown in
the PC screen. The design mapped in the FPGA’s operated
at 6.6MHz and the bus splitter modules transferred data us-
ing 33MHz PCI clock.

5. Conclusion

In this paper, we proposed an emulation environment for
SoC using small number of large gate-count FPGA’s and a
PC system. To overcome the partitioning problem when the
design size overwhelms the FPGA gate count, we used bus
splitter modules that replicate on-chip bus signals in one
FPGA to arbitrary number of other FPGA’s with minimal
pin count.

The proposed scheme was applied to the emulation of
2 million gate multimedia processing chip using two Xil-
inx Viretex2 6000 FPGA devices in 6.6MHz operating fre-
quency. The ARM core, memories, camera and LCD dis-
play modules are modeled in software using dual 2GHz

Figure 7. Three PCl cards mounting FPGA’s
are installed in 33MHz PCI slots of Pentium
PC. 80-pin SCSI cable is used to interconnect
three cards.

Pentium-III processors.

The proposed scheme can be used for other on-chip bus
standards and for more number of FPGA’s without losing
emulation speed.

References

[1] ARM Limited. AMBA Specification(Rev 2.0), 1999.

[2] M. H. G. M. A. M. Henry Chang, Larry Cooke and L. Todd.
Surviving the SOC Revolution; A Guide to Platform-Based
Design.

{3] IBM Cooperation, Research Triangle Park, NC. On-Chip
Peripheral Bus; Architecture Specifiations, 1999.

{4] IBM Cooperation, Research Triangle Park, NC. Processor
Local Bus; Architecture Specifiations, 1999.

[S] M. D. S. Z. H. D. M. H. Jonathan Babb, Russel Tessier
and A. Agarwal. Logic emulation with virtual wires. /EEE
Trans. on Computer-Aided Design, 16(7), July 1997.

[6] M. Keating and P. Bricaud. Reuse Methodology Manual for
System-on-a-Chip Designs. Kluwer Academic Publishers,
Boston, MA, 1999.

[7]1 M. Khalid. Routing architecture and layout synthesis for
multi-fpga systems. 1999.

[8] S.-y. Y. Kyung-soo Oh and S.-I. Chae. Emulator environ-
ment based on an fpga prototyping board. Proceedings of
11th International Workshop on Rapid System Proceedings,
2000.

[9] P. P. Prakash Rashinkar and L. Singh. System-on-a-chip Ver-
ification; Methodology and Techniques. Kluwer Academic
Publishers, Boston, MA, 2000.

[10] G. B. Scott Hauck and C. Ebeling. Mesh routing topologies
for multi-fpga systems. /EEE Trans. on Very Large Scale
Integration Systems, 6(3):400-408, September 1998.

[11] R. Seepold and A. Kunzmann. Reuse Techniques for VLSI
Design. Kluwer Academic Publishers, Boston, MA, 1999.

862

