• 제목/요약/키워드: Convex hypersurface

검색결과 14건 처리시간 0.021초

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

AN EXTENSION OF SCHNEIDER'S CHARACTERIZATION THEOREM FOR ELLIPSOIDS

  • Dong-Soo Kim;Young Ho Kim
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.905-913
    • /
    • 2023
  • Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space 𝔼n+1 with the origin o in its convex side and with the outward unit normal N. For a fixed point p ∈ M and a positive constant t, we put 𝚽t the hyperplane parallel to the tangent hyperplane 𝚽 at p and passing through the point q = p - tN(p). We consider the region cut from M by the parallel hyperplane 𝚽t, and denote by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region and the origin o. Then Schneider's characterization theorem for ellipsoids states that among centrally symmetric, strictly convex and closed surfaces in the 3-dimensional Euclidean space 𝔼3, the ellipsoids are the only ones satisfying Ip(t) = 𝜙(p)t, where 𝜙 is a function defined on M. Recently, the characterization theorem was extended to centrally symmetric, strictly convex and closed hypersurfaces in 𝔼n+1 satisfying for a constant 𝛽, Ip(t) = 𝜙(p)t𝛽. In this paper, we study the volume Ip(t) of a strictly convex and complete hypersurface in 𝔼n+1 with the origin o in its convex side. As a result, first of all we extend the characterization theorem to strictly convex and closed (not necessarily centrally symmetric) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽. After that we generalize the characterization theorem to strictly convex and complete (not necessarily closed) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽.

A CHARACTERIZATION OF ELLIPTIC HYPERBOLOIDS

  • Kim, Dong-Soo;Son, Booseon
    • 호남수학학술지
    • /
    • 제35권1호
    • /
    • pp.37-49
    • /
    • 2013
  • Consider a non-degenerate open convex cone C with vertex the origin in the $n$2-dimensional Euclidean space $E^n$. We study volume properties of strictly convex hypersurfaces in the cone C. As a result, for example, if the volume of the region of an elliptic cone C cut off by the tangent hyperplane P of M at $p$ is independent of the point $p{\in}M$, then it is shown that the hypersurface M is part of an elliptic hyperboloid.

CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1311-1332
    • /
    • 2013
  • This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power ${\beta}$ of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.

NULLITY OF THE LEVI-FORM AND THE ASSOCIATED SUBVARIETIES FOR PSEUDO-CONVEX CR STRUCTURES OF HYPERSURFACE TYPE

  • Chung, Kuerak;Han, Chong-Kyu
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.169-178
    • /
    • 2019
  • Let $M^{2n+1}$, $n{\geq}1$, be a smooth manifold with a pseudoconvex integrable CR structure of hypersurface type. We consider a sequence of CR invariant subsets $M={\mathcal{S}}_0{\supset}{\mathcal{S}}_1{\supset}{\cdots}{\supset}{\mathcal{S}}_n$, where $S_q$ is the set of points where the Levi-form has nullity ${\geq}q$. We prove that ${\mathcal{S}}{_q}^{\prime}s$ are locally given as common zero sets of the coefficients $A_j$, $j=0,1,{\ldots},q-1$, of the characteristic polynomial of the Levi-form. Some sufficient conditions for local existence of complex submanifolds are presented in terms of the coefficients $A_j$.

SYMMETRY AND UNIQUENESS OF EMBEDDED MINIMAL HYPERSURFACES IN ℝn+1

  • Park, Sung-Ho
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.21-30
    • /
    • 2021
  • In this paper, we prove some rigidity results about embedded minimal hypersurface M ⊂ ℝn+1 with compact ∂M that has one end which is regular at infinity. We first show that if M ⊂ ℝn+1 meets a hyperplane in a constant angle ≥ ��/2, then M is part of an n-dimensional catenoid. We show that if M meets a sphere in a constant angle and ∂M lies in a hemisphere determined by the hyperplane through the center of the sphere and perpendicular to the limit normal vector nM of the end, then M is part of either a hyperplane or an n-dimensional catenoid. We also show that if M is tangent to a C2 convex hypersurface S, which is symmetric about a hyperplane P and nM is parallel to P, then M is also symmetric about P. In special, if S is rotationally symmetric about the xn+1-axis and nM = en+1, then M is also rotationally symmetric about the xn+1-axis.