A SHARP LOWER BOUND OF THE FIRST NEUMANN EIGENVALUE OF A COMPACT HYPERSURFACE INSIDE A CONVEX SET ## KEOMKYO SEO* ABSTRACT. In this paper we provide a sharp lower bound of the first Neumann eigenvalue of a compact hypersurface Σ inside a convex set C in a Riemannian manifold under the assumption that $\partial \Sigma$ meets ∂C orthogonally. #### 1. Introduction Let Σ be an n-dimensional compact Riemannian manifold with boundary $\partial \Sigma$. In terms of local coordinates (x^1, \dots, x^n) , the Riemannian metric is given by $ds^2 = \sum_{i,j=1}^n g_{ij} dx^i dx^j$ and the Laplace operator is defined by $$\Delta = \frac{1}{\sqrt{g}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x^{i}} (\sqrt{g} g^{ij} \frac{\partial}{\partial x^{j}}),$$ where $(g^{ij}) = (g_{ij})^{-1}$ and $g = \det(g_{ij})$. We shall deal with the following Neumann eigenvalue problem on Σ . $$\Delta f + \lambda f = 0 \qquad \text{in } \Sigma,$$ $$\frac{\partial f}{\partial \nu} = 0 \qquad \text{on } \partial \Sigma,$$ where ν is the unit outward normal vector to the boundary $\partial \Sigma$. The first nonzero eigenvalue λ_1 in the above Neumann eigenvalue problem is Received May 12, 2010; Accepted August 12, 2010. 2010 Mathematics Subject Classification: Primary 58J50; Secondary 35P15. Key words and phrases: Neumann eigenvalue, Laplacian operator, convex set. characterized as follows. $$\lambda_1 = \inf_{\phi \in H_1^2(\Sigma)} \frac{\int_{\Sigma} |\nabla \phi|^2}{\int_{\Sigma} \phi^2},$$ for all $\phi \in C^{\infty}(\Sigma)$ with $\int_{\Sigma} \phi = 0$. For compact Riemannian manifolds with convex boundary, the estimates of the lower bound of λ_1 were obtained by Li-Yau [4] and Escobar [3]. In [1], R. Chen gave a lower bound of λ_1 for compact Riemannian manifolds with possibly nonconvex boundary. In this paper, we treat the Neumann eigenvalue problem on Σ in a more geometric way. Let C be a convex body in an (n+1)-dimensional Riemannian manifold M. Let Σ be an immersed hypersurface in C which is smooth up to its boundary $\partial \Sigma$ and suppose that $\partial \Sigma$ meets ∂C orthogonally. For such hypersurface Σ , we obtain an estimate of the first Neumann eigenvalue as follows. THEOREM 1.1. Let C be an (n+1)-dimensional convex subset of a Riemannian manifold M^{n+1} with boundary ∂C . Let Σ be a compact hypersurface in C whose boundary meets ∂C perpendicularly. Assume that $\mathrm{Ric}_{\Sigma} \geq k(n-1)$ for a positive constant k. Then the first Neumann eigenvalue λ_1 of the Laplacian of Σ satisfies $$\lambda_1 \geq nk$$. Moreover, equality holds if and only if Σ is isometric to a hemisphere of radius $\frac{1}{\sqrt{k}}$ in the (n+1)-dimensional Euclidean space. ### 2. Proof of the main theorem Let M be an n-dimensional Riemannian manifold with boundary ∂M . Let f be a function defined on Σ which is smooth up to ∂M . Let $\overline{\Delta}f$ and $\overline{\nabla}f$ denote the Laplacian and the gradient of f with respect to the Riemannian metric of M, whereas Δf and ∇f denote the Laplacian and the gradient of f with respect to the induced Riemannian metric on ∂M , respectively. For $p \in M$ and $X, Y \in T_pM$, the Hessian tensor is defined by $(\overline{D}^2f)(X,Y) = X(Yf) - (\overline{\nabla}_XY)f$, where $\overline{\nabla}_XY$ is the covariant derivative of the Riemannian connection of M. Denote $z = f|_{\partial M}$ and $u = \frac{\partial f}{\partial \nu}|_{\partial M}$, where $\frac{\partial f}{\partial \nu}$ is the outward normal derivative of f. Let $\{e_1, \dots, e_{n-1}, e_n\}$ be a local orthonormal frame such that $\{e_1, \dots, e_{n-1}\}$ are tangent to ∂M and $e_n = \nu$ is the outward normal vector at $q \in \partial M$. The second fundamental form of ∂M in M is defined as $\Pi(v,w) = \langle \overline{\nabla}_v e_n, w \rangle$, where v and w are vectors tangent to ∂M and the mean curvature H is given by $H = \sum_{i=1}^{n-1} \Pi(e_i, e_i)$. In order to prove our main theorem, we need the following well known formula which is called Reilly formula [5](See also [2]). THEOREM 2.1 (Reilly formula). $$\begin{split} \int_{M} (\overline{\Delta}f)^{2} - |\overline{D}^{2}f|^{2} &= \int_{M} \mathrm{Ric}(\overline{\nabla}f, \overline{\nabla}f) \\ (2.1) &+ \int_{\partial M} (\Delta z + Hu)u - \int_{\partial M} \langle \nabla z, \nabla u \rangle + \int_{\partial M} \Pi(\nabla z, \nabla z), \end{split}$$ where Ric(,) is the Ricci tensor of M. We are now ready to prove our main theorem. THEOREM 2.2. Let C be an (n+1)-dimensional convex subset of a Riemannian manifold M^{n+1} with boundary ∂C . Let Σ be a compact hypersurface in C whose boundary meets ∂C perpendicularly. Assume that $\mathrm{Ric}_{\Sigma} \geq k(n-1)$ for a positive constant k. Then the first Neumann eigenvalue λ_1 of the Laplacian of Σ satisfies $$\lambda_1 > nk$$ Moreover, equality holds if and only if Σ is isometric to a hemisphere of radius $\frac{1}{\sqrt{k}}$ in the (n+1)-dimensional Euclidean space. *Proof.* Let f be the first eigenfunction on Σ , i.e., $$\overline{\Delta}f + \lambda_1 f = 0$$ on Σ , $u = \frac{\partial f}{\partial \nu} = 0$ on $\partial \Sigma$, where ν is the unit outward normal vector to the boundary $\partial \Sigma$. By the Cauchy-Schwarz inequality, one sees that $(\overline{\Delta}f)^2 \leq n|\overline{D}^2f|^2$. Using this in the Reilly formula (2.1) and the fact that $u = \frac{\partial f}{\partial \nu} = 0$ on $\partial \Sigma$, we get $$\int_{\Sigma} \frac{n-1}{n} (\overline{\Delta}f)^2 \ge \int_{\Sigma} \operatorname{Ric}(\overline{\nabla}f, \overline{\nabla}f) + \int_{\partial \Sigma} \Pi(\nabla z, \nabla z)$$ $$\ge k(n-1) \int_{\Sigma} |\overline{\nabla}f|^2 + \int_{\partial \Sigma} \Pi(\nabla z, \nabla z),$$ where we used our assumption on the Ricci tensor in the last inequality. Putting $\overline{\Delta}f = -\lambda_1 f$ into the above inequality, we get $$(2.2) \qquad \left(\frac{n-1}{n}\right)\lambda_1^2 \int_{\Sigma} f^2 \ge k(n-1) \int_{\Sigma} |\overline{\nabla} f|^2 + \int_{\partial \Sigma} \Pi(\nabla z, \nabla z).$$ Now we recall that the second fundamental form $\widetilde{\Pi}$ of ∂C in M is given by $$\widetilde{\Pi}(V,W) = \langle \widetilde{\nabla}_V e_n, W \rangle,$$ where $\widetilde{\nabla}$ denotes the connection of M and V,W are vectors tangent to ∂C . Then the convexity of C implies that (2.3) $$\widetilde{\Pi}(V,V) = \langle \widetilde{\nabla}_V e_n, V \rangle = -\langle \widetilde{\nabla}_V V, e_n \rangle \ge 0$$ for all $V \in T(\partial C)$. We choose a unit vector e_{n+1} satisfying that $\{e_1, \dots, e_n = \nu, e_{n+1}\}$ is a local orthonormal frame in M^{n+1} . It follows that e_{n+1} is perpendicular to $\partial \Sigma$, since $\partial \Sigma$ meets ∂C orthogonally. Given $v \in T(\partial \Sigma) \subset T(\partial C)$, we have $$\widetilde{\nabla}_v v - \overline{\nabla}_v v \in N(\Sigma),$$ where $N(\Sigma)$ denotes the normal space of Σ . Hence we get $\langle \overline{\overline{\nabla}}_v v - \overline{\nabla}_v v, e_n \rangle = 0$, i.e., (2.4) $$\langle \widetilde{\nabla}_v v, e_n \rangle = \langle \overline{\nabla}_v v, e_n \rangle.$$ It follows from (2.3) and (2.4) that $$\Pi(v,v) = -\langle \overline{\nabla}_v v, e_n \rangle = \langle \widetilde{\nabla}_v v, e_n \rangle \ge 0.$$ Thus the inequality (2.2) becomes $$\left(\frac{n-1}{n}\right)\lambda_1^2 \int_{\Sigma} f^2 \ge k(n-1) \int_{\Sigma} |\overline{\nabla} f|^2.$$ Since $\lambda_1 = \inf_{\phi \in H_1^2(\Sigma)} \frac{\int_{\Sigma} |\overline{\nabla}\phi|^2}{\int_{\Sigma} \phi^2}$ for all $\phi \in C^{\infty}(\Sigma)$ satisfying that $\int_{\Sigma} \phi = 0$, we see that $$\left(\frac{n-1}{n}\right)\lambda_1^2 \ge k(n-1)\frac{\int_{\Sigma} |\overline{\nabla}f|^2}{\int_{\Sigma} f^2} \ge k(n-1)\lambda_1.$$ Hence we obtain $$\lambda_1 > nk$$. If equality holds, then using Escobar's result [3, Theorem 4.2 and 4.3], we get Σ is isometric to a hemisphere of radius $\frac{1}{\sqrt{k}}$ in the (n+1)-dimensional Euclidean space. ## References - [1] R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. Amer. Math. Soc. 108 (1990), no. 4, 961-970. - [2] H. I. Choi and A.N. Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom. 18 (1983), no. 3, 559-562. - [3] J. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43 (1990), no. 7, 857-883. - [4] P. Li and S.-T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, R.I., (1980), 205-239. - [5] R. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459-472. * Department of Mathematics Sookmyung Women's University Seoul 140-742, Republic of Korea *E-mail*: kseo@sookmyung.ac.kr