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AN EXTENSION OF SCHNEIDER’S CHARACTERIZATION

THEOREM FOR ELLIPSOIDS

Dong-Soo Kim and Young Ho Kim

Abstract. Suppose that M is a strictly convex hypersurface in the

(n+1)-dimensional Euclidean space En+1 with the origin o in its convex
side and with the outward unit normal N . For a fixed point p ∈ M and

a positive constant t, we put Φt the hyperplane parallel to the tangent

hyperplane Φ at p and passing through the point q = p− tN(p). We con-
sider the region cut from M by the parallel hyperplane Φt, and denote

by Ip(t) the (n+ 1)-dimensional volume of the convex hull of the region
and the origin o. Then Schneider’s characterization theorem for ellip-

soids states that among centrally symmetric, strictly convex and closed

surfaces in the 3-dimensional Euclidean space E3, the ellipsoids are the
only ones satisfying Ip(t) = ϕ(p)t, where ϕ is a function defined on M .

Recently, the characterization theorem was extended to centrally sym-

metric, strictly convex and closed hypersurfaces in En+1 satisfying for a
constant β, Ip(t) = ϕ(p)tβ .

In this paper, we study the volume Ip(t) of a strictly convex and

complete hypersurface in En+1 with the origin o in its convex side. As
a result, first of all we extend the characterization theorem to strictly

convex and closed (not necessarily centrally symmetric) hypersurfaces in

En+1 satisfying Ip(t) = ϕ(p)tβ . After that we generalize the character-
ization theorem to strictly convex and complete (not necessarily closed)

hypersurfaces in En+1 satisfying Ip(t) = ϕ(p)tβ .

1. Introduction

We will say that a convex hypersurface in the (n+1)-dimensional Euclidean
space En+1 is strictly convex if the hypersurface is of positive Gauss-Kronecker
curvature K with respect to the inward unit normal ([1]).
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Suppose that M is a strictly convex hypersurface in the (n+1)-dimensional
Euclidean space En+1 with the origin in its convex side and with the outward
unit normal N . For a fixed point p ∈ M , the support function h(p) = ⟨p,N(p)⟩
of M at p is nothing but the distance from the origin to the tangent hyperplane
Φ to M at the point p. For a constant t ∈ (0, h(p)], we consider the hyperplane
Φt parallel to the tangent hyperplane Φ and passing through the point q =
p − tN(p). Then t is the distance from the point q to the tangent hyperplane
Φ to M at p.

We denote by Ap(t), Vp(t) and Cp(t) the n-dimensional area of the section in
Φt enclosed by Φt ∩M , the (n+ 1)-dimensional volume of the region bounded
by M and the hyperplane Φt, and the (n+ 1)-dimensional volume of the cone
with base the section in Φt enclosed by Φt ∩M and with vertex the origin o,
respectively. We also denote by Ip(t) the (n + 1)-dimensional volume of the
ice cream cone-shaped domain which is the convex hull of the origin o and the
region of M cut off by the hyperplane Φt. Then, we have ([7])

(1.1)
d

dt
Vp(t) = Ap(t),

(1.2) Cp(t) =
1

n+ 1
Ap(t) (h(p)− t)

and

(1.3) Ip(t) = Cp(t) + Vp(t).

For a constant t (> h(p)) such that the hyperplane Φt intersects M , Ap(t),
Vp(t), Cp(t) and Ip(t) are also well-defined. In this case, (1.2) shows that Cp(t)
is (−1) times the volume of the corresponding cone with vertex the origin.
Hence (1.3) implies that Ip(t) is the volume of a concave domain in En+1. See
Figure 1.

Recently, in [9] the following characterization theorem was established, which
is originally due to R. Schneider ([12]).

Proposition A. Suppose that the centrally symmetric convex body B cen-
tered at the origin o in the (n + 1)-dimensional Euclidean space En+1 has
smooth boundary M which is of positive Gauss-Kronecker curvature. Then,
for a positive constant β and a positive function ϕ defined on M , M satisfies
Ip(t) = ϕ(p)tβ if and only if β = 1, n = 2 and M is a 2-dimensional ellipsoid
centered at the origin in the 3-dimensional Euclidean space E3. In this case,
we have Ip(t) = αt/h(p) for some positive constant α.

In this paper, first of all in Section 2, for a strictly convex and closed (not
necessarily centrally symmetric) hypersurface M in the (n + 1)-dimensional
Euclidean space En+1 we prove the following characterization theorem:

Theorem B. Suppose that M is a strictly convex and closed hypersurface in
the (n + 1)-dimensional Euclidean space En+1 with the origin in its interior
which satisfies Ip(t) = ϕ(p)tβ, where ϕ is a function on M and β is a constant.
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Figure 1. Ip(t) with t < h(p) and Ip(t) with t > h(p).

Then M is an ellipsoid centered at the origin in the 3-dimensional Euclidean
space E3.

Next, for a strictly convex and complete (not necessarily closed) hypersurface
M in the (n + 1)-dimensional Euclidean space En+1 with n = 4k + 2, k =
0, 1, 2, . . ., in Section 3 we establish the following characterization theorem:

Theorem C. Suppose that M is a strictly convex and complete hypersurface
in the (n + 1)-dimensional Euclidean space En+1 (n = 4k + 2, k ≥ 0) with the
origin in its convex side which satisfies Ip(t) = ϕ(p)tβ, where ϕ is a function
on M and β is a constant. Then n = 2 and M is an ellipsoid centered at the
origin in the 3-dimensional Euclidean space E3.

In order to prove Theorems B and C, we investigate the n-dimensional area
Ap(t) of the section in the hyperplane Φt enclosed by Φt ∩ M and we use a
characterization theorem for ellipsoids established in [9]. When n = 4k + 2
(k ≥ 0), we will show that as t tends to ∞, the area Ap(t) goes to −∞. Hence,
we have Ap(d) = 0 for some constant d > 0. This shows that the hypersurface
M must be closed. Therefore Theorem B completes the proof of Theorem C.

Finally, for further study we raise a question as follows.

Question D. Are there any strictly convex and non-closed complete hypersur-
faces in the (n+1)-dimensional Euclidean space En+1 satisfying Ip(t) = ϕ(p)tβ

for a function ϕ on M and a constant β?

Some characterization theorems for hyperplanes, circular hypercylinders, hy-
perspheres, ellipsoids, elliptic paraboloids and elliptic hyperboloids in the Eu-
clidean space En+1 were established in [2–8,11,12]. For some characterizations
of hyperbolic space in the Minkowski space En+1

1 , we refer [10].
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Throughout this article, all objects are smooth (C3) and connected, unless
otherwise mentioned.

2. Preliminaries and Theorem B

In order to prove our theorems, first of all, we need the following.

Lemma 2.1. Suppose that M is a strictly convex and closed smooth hyper-
surface of the (n+ 1)-dimensional Euclidean space En+1 with the origin in its
interior. Then we have the following:

(2.1) lim
t→0

1

(
√
t)n

Ap(t) =
(
√
2)nωn√
K(p)

,

(2.2) lim
t→0

1

(
√
t)n+2

Vp(t) =
(
√
2)n+2ωn

(n+ 2)
√
K(p)

,

(2.3) lim
t→0

1

(
√
t)n

Cp(t) =
(
√
2)nωn

(n+ 1)
√

K(p)
h(p),

(2.4) lim
t→0

1

(
√
t)n

Ip(t) =
(
√
2)nωn

(n+ 1)
√
K(p)

h(p),

where ωn denotes the volume of the n-dimensional unit ball in the n-dimensional
Euclidean space En and h(p) the support function of M at p ∈ M .

Proof. For proofs of (2.1) and (2.2), see Lemma 8 of [7]. Together with (2.1)
and (2.2), it follows from (1.2) and (1.3) that (2.3) and (2.4) hold. □

Next, we need the following characterization theorem for ellipsoids.

Proposition 2.2. Let M denote a strictly convex and closed hypersurface in
the (n + 1)-dimensional Euclidean space En+1 with the origin in its interior.
We denote by K(p) and h(p) the Gauss-Kronecker curvature of M at p and the
support function of M at p, respectively. Then M satisfies K(p) = αh(p)n+2 for
a nonzero constant α if and only if M is an ellipsoid in the (n+1)-dimensional
Euclidean space En+1 centered at the origin.

Proof. For a proof, see Theorem A of [9]. □

Now, we prove Theorem B as follows.
Suppose thatM is a strictly convex and closed hypersurfaceM in the (n+1)-

dimensional Euclidean space En+1 with the origin in its interior which satisfies
for a constant β

(2.5) Ip(t) = ϕ(p)tβ ,
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where ϕ(p) denotes a function of p ∈ M . Then we get from (2.4) that β = n/2
and

(2.6) ϕ(p) = cn
h(p)√
K(p)

, cn =
(
√
2)nωn

(n+ 1)
,

where ωn is the volume of the n-dimensional unit ball in the n-dimensional
Euclidean space En.

For a fixed point p ∈ M , we denote by p̄ the unique point on M , where the
tangent hyperplane to M is parallel to the tangent hyperplane to M at p. We
put a = h(p) and b = h(p̄). Then, for the volume V of the interior of M we
have

(2.7) V = Ip(a+ b) = ϕ(p)(a+ b)n/2

and

(2.8) V = Ip̄(a+ b) = ϕ(p̄)(a+ b)n/2.

It follows from (2.7) and (2.8) that

(2.9) ϕ(p) = ϕ(p̄).

Furthermore, we have

(2.10) V = Ip(a) + Ip̄(b) = ϕ(p)an/2 + ϕ(p̄)bn/2 = ϕ(p)(an/2 + bn/2),

where the third equality follows from (2.9). Together with (2.7), this implies

(2.11) (a+ b)n/2 = an/2 + bn/2.

Since a and b are positive, we have

(2.12)

{
(a+ b)n/2 < an/2 + bn/2, if n = 1,

(a+ b)n/2 > an/2 + bn/2, if n ≥ 3.

Together with (2.11), this shows that n = 2 and hence β = 1. Thus we obtain
from (2.5) and (2.6)

(2.13) Ip(t) = ϕ(p)t,

and

(2.14) ϕ(p) = c2
h(p)√
K(p)

, c2 =
2

3
π.

In this case, for later use in the proof of Theorem C we suppose that M
is a strictly convex and complete (not necessarily closed) surface in the 3-
dimensional Euclidean space E3 with the origin in its convex side which satisfies
(2.13) with (2.14). Recall the definition of Ip(t). Then we have

(2.15) Ip(t) =
1

3
(h(p)− t)Ap(t) + Vp(t).

Together with the definition of Ip(t), (2.13) implies

(2.16) 3ϕ(p)t = (h(p)− t)Ap(t) + 3Vp(t).
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Since V ′
p(t) = Ap(t), differentiating (2.16) with respect to t gives

(2.17) A′
p(t) +

2

h(p)− t
Ap(t) = 3

ϕ(p)

h(p)− t
.

Using the integrating factor (h(p)−t)−2 of the first order differential equation
(2.17), one obtains

(2.18) Ap(t) = c(p)(h(p)− t)2 +
3

2
ϕ(p),

where c(p) is a constant depending only on p. Since Ap(0) = 0, we get

(2.19) c(p) = − π√
K(p)

1

h(p)
.

Hence we have

(2.20) Ap(t) =
π√
K(p)

t

h(p)
(2h(p)− t),

which shows that Ap(2h(p)) = 0. Thus we see that the surface M is a closed
surface and Ip(2h(p)) is the volume V of the interior of M .

It follows from (2.13) and (2.14) that

(2.21) V =
4π

3

h(p)2√
K(p)

,

which implies

(2.22) K(p) =

(
4π

3V

)2

h(p)4.

Therefore Proposition 2.2 shows that M is a 2-dimensional ellipsoid centered
at the origin in the 3-dimensional Euclidean space E3.

Conversely, it is straightforward to show that the 2-dimensional ellipsoid
given by

(2.23) a2x2 + b2y2 + c2z2 = 1

satisfies

(2.24) Ip(t) = α
t

h(p)
, α =

2π

3abc
.

This completes the proof of Theorem B.

3. Proof of Theorem C

Suppose thatM is a strictly convex and complete hypersurface in the (n+1)-
dimensional Euclidean space En+1 with the origin in its convex side which
satisfies for a constant β

(3.1) Ip(t) = ϕ(p)tβ ,
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where ϕ(p) denotes a function of p ∈ M . Then we get from (2.4) that β = n/2
and

(3.2) ϕ(p) = cn
h(p)√
K(p)

, cn =
(
√
2)nωn

(n+ 1)
,

where ωn is the volume of the n-dimensional unit ball in the n-dimensional
Euclidean space En.

Hereafter we fix a point p ∈ M and put a = h(p) the support function of M
at p ∈ M . It follows from the definition of Ip(t) that

(3.3) Ip(t) =
1

n+ 1
(a− t)Ap(t) + Vp(t).

Together with the definition of Ip(t), (3.1) implies

(3.4) (n+ 1)ϕ(p)tn/2 = (a− t)Ap(t) + (n+ 1)Vp(t).

Using V ′
p(t) = Ap(t), we differentiate (3.4) with respect to t. Then we get

(3.5) A′
p(t) +

n

a− t
Ap(t) = dn(p)

t(n−2)/2

a− t
,

where we put

(3.6) dn(p) =
n(n+ 1)

2
ϕ(p).

In order to solve the first order differential equation (3.5), we use the integrating
factor (a− t)−n. Then we obtain

(3.7) Ap(t) = dn(p)(a− t)nJn(t),

where we let

(3.8) Jn(t) =

∫
t(n−2)/2

(a− t)n+1
dt.

In this section, we prove Theorem C as follows. Recall that when n = 2, the
proof of Theorem C was completed in the proof of Theorem B. Hence we may
assume that n = 2k with k ≥ 2. Then we have

(3.9)

Jn(t) =

∫
tk−1

(a− t)2k+1
dt

=

k−1∑
j=0

∫
A2k+1−j

(a− t)2k+1−j
dt

=

k−1∑
j=0

A2k+1−j

(2k − j)(a− t)2k−j
+ d(p),

where d(p) is an integration constant depending only on p and we put

(3.10) A2k+1−j = (−1)j
(
k − 1

j

)
ak−1−j , 0 ≤ j ≤ k − 1.
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It follows from (3.7) that

(3.11) Ap(t) = dn(p)


k−1∑
j=0

A2k+1−j

(2k − j)
(a− t)j + d(p)(a− t)2k

 .

Since Ap(0) = 0, one obtains

(3.12) d(p) =
α(k)

ak+1
,

where α(k) is defined by

(3.13) α(k) = −
k−1∑
j=0

(−1)j

2k − j

(
k − 1

j

)
.

Note that α(k) can be written as follows:

(3.14) α(k) = −
∫ 1

0

xk(x− 1)k−1dx.

Hence we see that when k is odd (even, resp.), the constant α(k) is negative
(positive, resp.). Together with (3.11), this shows that

(3.15)

{
limt→∞ Ap(t) = −∞, if k is odd,

limt→∞ Ap(t) = ∞, if k is even.

Thus, for n = 2k with an odd number k there exists a positive number d
satisfying Ap(d) = 0. This implies that the hypersurfaceM is closed. Therefore
Theorem B completes the proof of Theorem C.
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