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AN EXTENSION OF SCHNEIDER’S CHARACTERIZATION
THEOREM FOR ELLIPSOIDS
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ABSTRACT. Suppose that M is a strictly convex hypersurface in the
(n + 1)-dimensional Euclidean space E*t1 with the origin o in its convex
side and with the outward unit normal N. For a fixed point p € M and
a positive constant t, we put ®: the hyperplane parallel to the tangent
hyperplane ® at p and passing through the point ¢ = p —tN(p). We con-
sider the region cut from M by the parallel hyperplane ®;, and denote
by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region
and the origin o. Then Schneider’s characterization theorem for ellip-
soids states that among centrally symmetric, strictly convex and closed
surfaces in the 3-dimensional Euclidean space E3, the ellipsoids are the
only ones satisfying I,(t) = ¢(p)t, where ¢ is a function defined on M.
Recently, the characterization theorem was extended to centrally sym-
metric, strictly convex and closed hypersurfaces in E**1 satisfying for a
constant 8, I(t) = ¢(p)t’.

In this paper, we study the volume I,(t) of a strictly convex and
complete hypersurface in E**+1 with the origin o in its convex side. As
a result, first of all we extend the characterization theorem to strictly
convex and closed (not necessarily centrally symmetric) hypersurfaces in
En*1 satisfying I,(t) = ¢(p)t?. After that we generalize the character-
ization theorem to strictly convex and complete (not necessarily closed)
hypersurfaces in E"*1 satisfying I, (t) = ¢(p)t?.

1. Introduction

We will say that a convex hypersurface in the (n+ 1)-dimensional Euclidean
space E"t1 is strictly convez if the hypersurface is of positive Gauss-Kronecker
curvature K with respect to the inward unit normal ([1]).
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Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional
Euclidean space E"*! with the origin in its convex side and with the outward
unit normal N. For a fixed point p € M, the support function h(p) = (p, N(p))
of M at p is nothing but the distance from the origin to the tangent hyperplane
® to M at the point p. For a constant ¢ € (0, h(p)], we consider the hyperplane
®, parallel to the tangent hyperplane ® and passing through the point ¢ =
p —tN(p). Then t is the distance from the point ¢ to the tangent hyperplane
® to M at p.

We denote by A, (%), V,(t) and C,(t) the n-dimensional area of the section in
®, enclosed by ®; N M, the (n + 1)-dimensional volume of the region bounded
by M and the hyperplane ®;, and the (n 4 1)-dimensional volume of the cone
with base the section in ®; enclosed by ®; N M and with vertex the origin o,
respectively. We also denote by I,,(t) the (n + 1)-dimensional volume of the
ice cream cone-shaped domain which is the convex hull of the origin o and the
region of M cut off by the hyperplane ®;. Then, we have ([7])

d
(1.1) Vo) = Ay(t),
(12) Co(t) = — Ay(t) (6(p) — )
and
(1'3) Ip(t) = Cp(t) + Vp(t)~

For a constant t (> h(p)) such that the hyperplane ®, intersects M, Ay (t),
Vp(t), Cp(t) and I,(t) are also well-defined. In this case, (1.2) shows that Cy(¢)
is (—1) times the volume of the corresponding cone with vertex the origin.
Hence (1.3) implies that I,(¢) is the volume of a concave domain in E"*1. See
Figure 1.

Recently, in [9] the following characterization theorem was established, which
is originally due to R. Schneider ([12]).

Proposition A. Suppose that the centrally symmetric conver body B cen-
tered at the origin o in the (n + 1)-dimensional Euclidean space E"T' has
smooth boundary M which is of positive Gauss-Kronecker curvature. Then,
for a positive constant 8 and a positive function ¢ defined on M, M satisfies
I,(t) = ¢(p)t? if and only if B = 1,n =2 and M is a 2-dimensional ellipsoid
centered at the origin in the 3-dimensional Euclidean space E>. In this case,
we have I,(t) = at/h(p) for some positive constant c.

In this paper, first of all in Section 2, for a strictly convex and closed (not
necessarily centrally symmetric) hypersurface M in the (n + 1)-dimensional
Euclidean space E"t! we prove the following characterization theorem:

Theorem B. Suppose that M is a strictly conver and closed hypersurface in
the (n + 1)-dimensional Euclidean space E"T1 with the origin in its interior
which satisfies I,(t) = ¢(p)t?, where ¢ is a function on M and (3 is a constant.
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FIGURE 1. I,(t) with ¢ < h(p) and I,(t) with ¢ > b(p).

Then M is an ellipsoid centered at the origin in the 3-dimensional Euclidean
space E3.

Next, for a strictly convex and complete (not necessarily closed) hypersurface
M in the (n + 1)-dimensional Euclidean space E"*! with n = 4k + 2, k =
0,1,2,..., in Section 3 we establish the following characterization theorem:

Theorem C. Suppose that M is a strictly convex and complete hypersurface
in the (n + 1)-dimensional Euclidean space E"T1 (n = 4k + 2,k > 0) with the
origin in its convex side which satisfies I,(t) = ¢(p)t’, where ¢ is a function
on M and [ is a constant. Then n = 2 and M is an ellipsoid centered at the
origin in the 3-dimensional Buclidean space E3.

In order to prove Theorems B and C, we investigate the n-dimensional area
Ap(t) of the section in the hyperplane ®; enclosed by ®; N M and we use a
characterization theorem for ellipsoids established in [9]. When n = 4k + 2
(k > 0), we will show that as ¢ tends to oo, the area A,(t) goes to —oo. Hence,
we have A,(d) = 0 for some constant d > 0. This shows that the hypersurface
M must be closed. Therefore Theorem B completes the proof of Theorem C.

Finally, for further study we raise a question as follows.

Question D. Are there any strictly convex and non-closed complete hypersur-
faces in the (n+ 1)-dimensional Euclidean space E"*! satisfying I,,(t) = ¢(p)t”
for a function ¢ on M and a constant 57

Some characterization theorems for hyperplanes, circular hypercylinders, hy-
perspheres, ellipsoids, elliptic paraboloids and elliptic hyperboloids in the Eu-
clidean space E"*! were established in [2-8,11,12]. For some characterizations
of hyperbolic space in the Minkowski space E'*!, we refer [10].
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Throughout this article, all objects are smooth (C®) and connected, unless
otherwise mentioned.

2. Preliminaries and Theorem B

In order to prove our theorems, first of all, we need the following.

Lemma 2.1. Suppose that M is a strictly convex and closed smooth hyper-
surface of the (n + 1)-dimensional Euclidean space E" with the origin in its
interior. Then we have the following:

1 (ﬂ)”wn

2.1) iy s ) = Y2
(2:2) lim (ﬁ;va(t) - m

(23) iy e Colt) = mh@),
(2.4 fim = Tol0) = m(f))iam »).

where wy, denotes the volume of the n-dimensional unit ball in the n-dimensional
Euclidean space E™ and b(p) the support function of M at p € M.

Proof. For proofs of (2.1) and (2.2), see Lemma 8 of [7]. Together with (2.1)
and (2.2), it follows from (1.2) and (1.3) that (2.3) and (2.4) hold. O

Next, we need the following characterization theorem for ellipsoids.

Proposition 2.2. Let M denote a strictly convex and closed hypersurface in
the (n + 1)-dimensional Buclidean space E"' with the origin in its interior.
We denote by K (p) and h(p) the Gauss-Kronecker curvature of M at p and the
support function of M at p, respectively. Then M satisfies K(p) = ah(p)"*+2 for
a nonzero constant o if and only if M is an ellipsoid in the (n+1)-dimensional
Euclidean space E"t! centered at the origin.

Proof. For a proof, see Theorem A of [9]. O

Now, we prove Theorem B as follows.

Suppose that M is a strictly convex and closed hypersurface M in the (n+1)-
dimensional Euclidean space E™t! with the origin in its interior which satisfies
for a constant (3

(2.5) L(t) = ¢(p)t”,
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where ¢(p) denotes a function of p € M. Then we get from (2.4) that § = n/2
and

_ b _ (V2)"wn
(2.6) d(p) = cn )y Cn = m7

where w,, is the volume of the n-dimensional unit ball in the n-dimensional
Euclidean space E”.

For a fixed point p € M, we denote by p the unique point on M, where the
tangent hyperplane to M is parallel to the tangent hyperplane to M at p. We
put a = h(p) and b = h(p). Then, for the volume V of the interior of M we
have

(2.7) V =I(a+b) = ¢(p)(a+b)"/?
and

(2.8) V = Iy(a+b) = ¢(p)(a + b)"/>.
It follows from (2.7) and (2.8) that

(2.9) ¢(p) = ¢(p)-

Furthermore, we have
(210) V= L(a) + I(b) = 6(p)a™2 + 662 = $(p)(a"/2 + b/2),
where the third equality follows from (2.9). Together with (2.7), this implies
(2.11) (a+b)"/2 =a™/? 4 pn/2,
Since a and b are positive, we have
{(a+b)"/2 <a™? "2 ifn =1,
(a+Db)"? > a™? +b™/2 if n>3.

Together with (2.11), this shows that n = 2 and hence § = 1. Thus we obtain
from (2.5) and (2.6)

(2.12)

(2.13) I,(t) = o(p)t,
and

e M) 2
(2.14) ¢(p) = c2 <Ok 3

In this case, for later use in the proof of Theorem C we suppose that M
is a strictly convex and complete (not necessarily closed) surface in the 3-
dimensional Euclidean space E3 with the origin in its convex side which satisfies

(2.13) with (2.14). Recall the definition of I,(¢). Then we have
1
(2.15) Ip(t) = 5 (b(p) = ) Ap(t) + Vp(2).

Together with the definition of I,(t), (2.13) implies
(2.16) 3p(p)t = (h(p) — ) Ap(t) + 3Vp(1).
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Since V, (t) = Ap(t), differentiating (2.16) with respect to ¢ gives

2 o(p)
2.17 AT (t) + Ay(t) =3 .
(2.17) o5y =i =35 —
Using the integrating factor (h(p)—t) =2 of the first order differential equation

(2.17), one obtains

(218) Ay(0) = ) (b(p) ~ 1) + 26(p),

where ¢(p) is a constant depending only on p. Since A,(0) = 0, we get
us 1

(2.19) c(p) = — NROLO)

Hence we have

™

K(p)

which shows that A,(2h(p)) = 0. Thus we see that the surface M is a closed
surface and I,,(2h(p)) is the volume V of the interior of M.
It follows from (2.13) and (2.14) that

v 4 b’

3 /K@)

t
(2.20) Ap(t) = W(%(p) —t),

(2.21)

which implies

2
4

2.22 K@p) = (- .
(2:22) 0= (57) b0
Therefore Proposition 2.2 shows that M is a 2-dimensional ellipsoid centered
at the origin in the 3-dimensional Euclidean space E3.

Conversely, it is straightforward to show that the 2-dimensional ellipsoid
given by

(2.23) a®z? +b?y? +?t =1
satisfies

¢ 2
(2.24) L(t) = T

ah(p)’ 7 Sabe
This completes the proof of Theorem B.

3. Proof of Theorem C

Suppose that M is a strictly convex and complete hypersurface in the (n+1)-
dimensional Euclidean space E™*! with the origin in its convex side which
satisfies for a constant (8

(3.1) I(t) = o(p)t”,
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where ¢(p) denotes a function of p € M. Then we get from (2.4) that § = n/2
and

(3.2) o) = cn h(p) ~(V2)"w,

) Cn = 73>
(n+1)

where w,, is the volume of the n-dimensional unit ball in the n-dimensional
Euclidean space E".

Hereafter we fix a point p € M and put a = h(p) the support function of M
at p € M. It follows from the definition of I,(t) that

1
(3-3) L(t) = (a=1)A,(1) + V,(1).
Together with the definition of I,(¢), (3.1) implies
(3.4) (n+1)(p)t"™? = (a—t)Ap(t) + (n + 1)V, (t).
Using V,(t) = Ap(t), we differentiate (3.4) with respect to t. Then we get
n H(n—2)/2
(3.5) A(t) + Ap(t) = dn(p)ﬁ,

a—t
where we put
n(n+1)

(3.6) dn(p) = ——5—9(p)-

In order to solve the first order differential equation (3.5), we use the integrating
factor (a —t)~"™. Then we obtain

(3.7) Ap(t) = dn(p)(a — )" Jn(t),
where we let

H(n—2)/2
(3.8) Tn(t) = / =

In this section, we prove Theorem C as follows. Recall that when n = 2, the
proof of Theorem C was completed in the proof of Theorem B. Hence we may
assume that n = 2k with £ > 2. Then we have

k—1
10 = [ gt
Akt
(3.9) = Z/wﬁmljdt

Aspri—j
k=)o P

Jj=0

where d(p) is an integration constant depending only on p and we put

k-1 )
(310) A2k+1—j = (—1)j< ] >ak1], 0 S] S k—1.
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It follows from (3.7) that

A _
(3.11) A1) = d() 1 3 =5y @t +dp)a -
i=0 J
Since A,(0) = 0, one obtains
a(k)
(3.12) alp) = S,
where a(k) is defined by
k—1 ;
(—1)/ <k - 1>
3.13 a(k) =— - .-
(313) W= u5(
Note that «a(k) can be written as follows:
1
(3.14) alk) = 7/ aF(x — 1) .
0

Hence we see that when k is odd (even, resp.), the constant «(k) is negative
(positive, resp.). Together with (3.11), this shows that

limy 00 Ap(t) = —o0, if k is odd,

3.15
( ) limy o0 Ap(t) = o0, if k is even.

Thus, for n = 2k with an odd number k there exists a positive number d
satisfying A, (d) = 0. This implies that the hypersurface M is closed. Therefore
Theorem B completes the proof of Theorem C.
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