
J. Korean Math. Soc. 53 (2016), No. 4, pp. 737–767
http://dx.doi.org/10.4134/JKMS.j140445
pISSN: 0304-9914 / eISSN: 2234-3008

DEFORMING PINCHED HYPERSURFACES OF

THE HYPERBOLIC SPACE BY POWERS OF

THE MEAN CURVATURE INTO SPHERES

Shunzi Guo, Guanghan Li, and Chuanxi Wu

Abstract. This paper concerns closed hypersurfaces of dimension n ≥ 2
in the hyperbolic space H

n+1
κ of constant sectional curvature κ evolving

in direction of its normal vector, where the speed equals a power β ≥ 1 of
the mean curvature. The main result is that if the initial closed, weakly
h-convex hypersurface satisfies that the ratio of the biggest and smallest
principal curvature at everywhere is close enough to 1, depending only
on n and β, then under the flow this is maintained, there exists a unique,
smooth solution of the flow which converges to a single point in H

n+1
κ

in a maximal finite time, and when rescaling appropriately, the evolving
hypersurfaces exponential convergence to a unit geodesic sphere of Hn+1

κ .

1. Introduction

This paper consider the following problem. Let Mn be a smooth, com-
pact oriented manifold of dimension n ≥ 2 without boundary, (Nn+1, ḡ) be an
(n + 1)-dimensional completed Riemannian manifold, and X0 : Mn → Nn+1

a smooth immersion. Consider a one-parameter family of smooth immersions:
Xt : Mn → Nn+1. The hypersurfaces Mt = Xt(M

n) are said to move by
powers of the mean curvature, if Xt = X(·, t) satisfies the evolution equation

(1.1)

{ ∂
∂t
X(p, t) = −Hβ (p, t) · ν (p, t) , p ∈Mn,

X(·, 0) = X0(·),

where β > 0, ν (p, t) is the outer unit normal to Mt at X (p, t) in the tan-
gent space TNn+1, and H (p, t) the trace of the Weingarten map W−ν (p, t) =
−Wν (p, t) on the tangent space TMn induced by Xt.
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The flow (1.1) has been considered by Schulze in [21], [22] when Nn+1 is the
Euclidean space R

n+1 for M0 of strictly positive mean curvature hypersuface.
Schulze called such a flow an Hβ-flow. In [21] he proved the following theorem.

Theorem 1.1 (see [21]). Let X0 :Mn → R
n+1 be a smooth immersion, where

H(M0) > 0. Then there exists a unique, smooth solution to the flow (1.1) on

a finite maximal time interval [0, T ). In the case that

i) M0 is strictly convex for 0 < β < 1,
ii) M0 is weakly convex for β ≥ 1,

then Mt converges to a point as t→ T .

Here “weakly convex” and “strictly convex”, resp., are defined as all the eigen-
values λi(p) of the Weingarten map W = {gikhkj} = {hij} being positive and

nonnegative, resp., where {gij} is the inverse of the induced metric {gij} and
{hij} the second fundamental form for 1 ≤ i, j, k ≤ n in a local coordinate.
Some counterexamples show that under the assumptions of Theorem 1.1 in gen-
eral the evolving hypersurfaces along the flow (1.1) may not become spherical
in shape as the limit is approached. Furthermore, if the initial hypersurface sat-
isfies a stronger assumption on principal curvatures, Schulze in [22] has shown
that for β > 1 the evolving hypersurfaces Mt contract to a point in finite time,
becoming spherical in shape as t → T . Precisely, denote the Gauß curvature
by K, he prove the following:

Theorem 1.2 (see [22]). For β ≥ 1 there exists a nonnegative constant C(n, β)
< 1/nn such that the following holds: If the initial hypersurface of R

n+1 is

pinched in the sense that

(1.2)
K(p)

Hn(p)
> C(n, β) for all p ∈Mn,

then this remains so under the Hβ-flow. The constant C(n, β) is increasing

in β, limβ→1 C(n, β) = 0 and limβ→+∞ C(n, β) = 1/nn. Furthermore the

normalized embedding

(1.3) X̂
(

p, t̂
)

:=
(

(β + 1)nk(T − t)−1/(β+1
)

(

X
(

p, t̂
)

− x0
)

converges for t̂ → +∞ exponentially in the C∞-topology to the unit sphere of

R
n+1. Here t̂ := −(β + 1)−1n−β ln(1 − t/T ), where T is the maximal time

of existence of the un-normalized flow and x0 is the point in R
n+1
κ where the

evolving hypersurfaces shrink down to.

However, the results of [21] and [22] do not closely relate to the ambient
space, we face the challenges of extending the above results to hypersurface to
more general ambient spaces. But not every Riemannian manifold is well suited
to deal with the situation analogous to the setting in the Euclidean space. We
want to consider the case that the ambient space is a simply connected Rie-
mannian manifold of constant sectional curvature κ(< 0) whose flow behaves
quite differently compared with the Euclidean space to a certain extent.
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Set a =
√

|κ| and Nn+1
κ be isometric to the hyperbolic space Hn+1

κ of radius
1/a:

H
n+1
κ := {p ∈ Ln+2 : 〈p, p〉 = − 1

a2
}.

Here (Ln+2, 〈·, ·〉) denotes the (n+2)-dimensional Lorentz-Minkowski space. To
consider the flow (1.1) in Nn+1

κ is then equivalent to consider the flow (1.1) in
H

n+1
κ . Indeed, in order to formulate the main result of this work, it is necessary

to provide some definitions as in [6, 7] as follows.

Definition 1.3. A horosphere H of Hn+1
κ is the limit of a geodesic sphere of

H
n+1
κ as its center goes to the infinity along a fixed geodesic ray.

Definition 1.4. An horoball H is the convex domain whose boundary is a
horosphere.

Definition 1.5. A hypersurfaceM of Hn+1
κ is said to be convex by horospheres

(h-convex for short) if it bounds a domain Ω satisfying that for every p ∈M =
∂Ω, there is a horosphere H of Hn+1

κ through p such that Ω is contained in H

of Hn+1
κ bounded by H.

Remark 1.6. In fact, Borisenko-Miquel in [6] have shown that horosphere H of
H

n+1
κ is weakly (strictly) h-convex if and only if all its principal curvatures are

(strictly) bounded from below by a at each point.

An earlier paper by the authors [13] has obtained the following result which
is an analogue of the above Theorem 1.1 of Schulze [21] on the flow (1.1) of
convex hypersurface of Rn+1 in the context of Hn+1

κ .

Theorem 1.7. Let X0 : Mn → H
n+1
κ be a smooth immersion with the mean

curvature strictly bounded from below by na, that is H(M0) > na. Then there

exists a unique, smooth solution to the flow (1.1) on a finite maximal time

interval [0, T ) and T is between 1
β+1 (Hmax(M0))

−(β+1) and n
β+1(Hmin(M0) −

na)−(β+1). In the case that

i) M0 is strictly h-convex for 0 < β < 1,
ii) M0 is weakly h-convex for β ≥ 1,

then the hypersurfaces Mt are strictly h-convex for all t > 0 and they contract

to a point in H
n+1
κ as t approaches T .

Denote the turbulent second fundamental form given by h̃ij := hij − agij .

Then the turbulent mean curvature H̃ = H − na and the turbulent Gauß
curvature K̃ = det{h̃ji}. In this paper the turbulent geometric quantities are
distinguished by a tilde. The purpose of this paper is to present following
extension of the above Theorem 1.2 of Schulze [22] on the flow (1.1) of convex
hypersurface of Rn+1 to h-convex hypersurface of Hn+1

κ .

Theorem 1.8. For β ≥ 1 there exists a nonnegative constant C(n, β) < 1/nn

such that the following holds: If the initial closed, weakly h-convex hypersurface
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of Hn+1
κ is pinched in the sense that

(1.4)
K̃(p)

H̃n(p)
> C(n, β) for all p ∈Mn,

then this remains under the Hβ-flow and the constant C(n, β) is increasing

in β, limβ→1 C(n, β) = 0 and limβ→+∞ C(n, β) = 1/nn. Furthermore the

normalized embedding

(1.5) X̂
(

p, t̂
)

:=
(

(β + 1)nk(T − t)−1/(β+1)
)

(

X
(

p, t̂
)

− q0
)

converges for t̂ → +∞ exponentially in the C∞-topology to the unit geodesic

sphere. Here t̂ := −(β + 1)−1n−β ln(1 − t/T ), where T is the maximal time

of existence of the un-normalized flow and q0 is the point in H
n+1
κ where the

evolving hypersurfaces shrink down to.

Remark 1.9. In fact, it is well-known that if the condition (1.4) with non-
negative constant C(n, β) holds on a closed hypersurface, then the principal

curvatures are larger than a everywhere and satisfy h̃ij > ε(C)H̃gij for a suit-
able ε(C) > 0 which is increasing with C. In other words, (1.4) implies in
particular the h-convexity of Mt for t ∈ [0, T ), see Lemma 2.7 for details, ex-
actly as the case in R

n+1 of [22]. So it can be viewed as a stronger pinching
condition on the principal curvature. A similar pinching condition has also been
considered by Chow [9] for Gauß curvature flow, Cabezas-Rivas and Sinestrari
[8] for volume-preserving flow by powers of the m-th mean curvature.

There exists a wide literature about the behavior of evolving hypersurfaces
in the Euclidean space (or some Riemannian manifolds) in the direction of
its inner normal with speed given by some curvature function. For β = 1,
this flow in (1.1) is the well-known mean curvature flow, Huisken [14] showed
that, when Nn+1 is the Euclidean space Rn+1, any closed convex hypersurface
M0 evolving by the mean curvature flow contracts to a point in finite time,
becoming spherical in shape as the limit is approached. In [15], he extended this
result to compact hypersurfaces in general Riemannian manifolds with suitable
bounds on curvature. In fact, the speed of the mean curvature flow can be
viewed as a symmetric function of the principal curvature with homogeneous
degree one, the results of [14] and [15] have been generalized to a class of fully
nonlinear parabolic equations of degree one in the Euclidean space (or some
Riemannian manifolds), see [1], [2], [9], [10], [16] and [18]. If one considers
the flows for which the speed has other positive degrees of homogeneity in
the principal curvature it is more difficult to prove corresponding results for
the flows. In some case it is known that if the initial hypersurface has an
appropriate pinching condition on the principal curvature (unless the case the
dimension of the hypersurface is two, see [3], [5] and [19]), then the evolving
hypersurfaces converge to a single point (see [4], [9] and [24]).

The rest of the paper is organized as follows: Section 2 first gives some useful
preliminary results employed in the rest of the paper, compute the evolution
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equation of the turbulent quantity K̃/H̃n, and applying the maximum principle
to this equation gives that if the initial hypersurface is pinched good enough,
then this is preserved for t > 0 as long as the flow (1.1) exists, this is a funda-
mental step in our procedure as in most of the literature quoted above. Further-
more, using this result Section 3 shows that the principal curvature comes close
together, at least at those points where the mean curvature tends to infinity.
Using these, Section 4 consider a natural normalized equation of the evolution
equation (1.1) by keeping some the total area of the normalized hypersurfaces
fixed and compute the evolution equations of the various normalized geometric
quantities. Using these normalized evolution equations Section 5 shows that
the hypersurfaces become spherical in shape as the limit is approached. Since
the coefficients of the second order operator of the normalized evolution equa-
tions depend on the mean curvature and the normalized hypersurfaces have
not uniform bound from below on the normalized mean curvature in time, the
evolution equations may become priori degenerate when time goes to infinity,
similar to the case of the Euclidean space which was pointed out in [22]. To deal
with this problem, following the idea in [22], a regularity result on degenerate
parabolic equations, due to DiBenedetto and Friedman [11], will be applied,
since the normalized equation can be rewritten as a suitable porous medium
equation. Section 6 proves that these normalized hypersurfaces converge to a
geodesic sphere of Hn+1

κ smoothly and at exponential rate.

2. Preserving pinching of curvature

From now on, we use the same notation as in [13] (or [7, 14, 21]) in local
coordinates. As we know that in the case β = 1 our Hβ-flow (1.1) is the mean
curvature flow, so we just only consider the flow (1.1) for β > 1. Theorem 1.7
shows that the evolving hypersurfaces are always strictly h-convex for positive
times. So the following always assume that our evolving hypersurfaces are
strictly h-convex, such that the mean curvature H > na, i.e., the corresponding
turbulent mean curvature H̃ > 0, the turbulent Gauß curvature K̃ = det{h̃ji} >
0, and the inverse of the turbulent Weingarten map {b̃ij} = {h̃ij}−1 is well-

defined. To control the pinching of the principal curvature along the flow (1.1)
of the Euclidean space, Schulze, in [22], following an idea of Tso [24], looked
at a test function Q = K/Hn, which was also considered in [8]. An analogous

quantity which is the quotient Q̃ = K̃/H̃n is more natural for our flow. By the

arithmetic-geometric mean inequality, Q̃ ≤ 1/nn onMt and equality holds at a

point in Mt if and only if λ̃1 = · · · = λ̃n, i.e., λ1 = · · · = λn at the point. Thus,
the only hypersurfaces such that Q̃ = 1/nn are the geodesic spheres. The rest

of this section consists of showing the inequality Q̃ ≥ C > 0 remains under the
evolution.

First recall the evolution equations for geometric quantities and correspond-
ing geometric quantities (see Theorem 3.2 and Theorem 3.3 in [13] for details).
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Lemma 2.1. On any solution Mt of (1.1) the following hold:

∂tgij = −2Hβhij ,(2.1)

∂tν = βHβ−1∇H,(2.2)

∂t(dµt) = −Hβ+1dµt,(2.3)

∂thij = βHβ−1∆hij + β(β − 1)Hβ−2∇iH∇jH − (β + 1)Hβhki hkj(2.4)

+ β
(

∣

∣A
∣

∣

2
+ na2

)

Hβ−1hij − a2(β + 1)Hβgij ,

∂th
j
i = βHβ−1∆hji + β(β − 1)Hβ−2∇iH∇jH − (β − 1)Hβhki h

j
k(2.5)

+ β
(

∣

∣A
∣

∣

2
+ na2

)

Hβ−1hji − a2(β + 1)Hβδji ,

∂tH = βHβ−1∆H + β(β − 1)Hβ−2|∇H |2 +
(

∣

∣A
∣

∣

2 − na2
)

Hβ ,(2.6)

∂tH
l = βHβ−1∆H l + lβ(β − l)Hβ+l−3|∇H |2(2.7)

+ l
(

∣

∣A
∣

∣

2 − na2
)

Hβ+l−1, l ∈ R.

Lemma 2.2. On any solution Mt of (1.1) the following hold:

∂th̃ij = βHβ−1∆h̃ij + β(β − 1)Hβ−2∇iH̃∇jH̃ − (β + 1)Hβhki h̃kj(2.8)

+ βHβ−1
∣

∣Ã
∣

∣

2
h̃ij + a(β + 1)Hβ h̃ij ,

∂th̃
j
i = βHβ−1∆h̃ji + β(β − 1)Hβ−2∇iH̃∇jH̃ − (β − 1)Hβhki h̃

j
k(2.9)

+ β
∣

∣Ã
∣

∣

2
Hβ−1hji + a(β + 1)Hβh̃ji ,

∂tH̃ = βHβ−1∆H̃ + β(β − 1)Hβ−2|∇H̃ |2 +Hβ
∣

∣Ã
∣

∣

2
+ 2aHβH̃,(2.10)

∂tH̃
l = βHβ−1∆H̃ l + lβ

[

(β − 1)H̃ − (l − 1)H
]

H̃ l−2Hβ−2|∇H̃ |2(2.11)

+ lHβH̃ l−1
∣

∣Ã
∣

∣

2
+ 2alHβH̃ l, l ∈ R.

The following algebraic property proved by Schulze in ([22], Lemma 2.5) will
be needed in the later sections.

Lemma 2.3. For any ε > 0 assume that λi ≥ εH > 0, i = 1, . . . , n, at some

point of an n-dimensional hypersurface. Then at the same point there exists a

δ = δ(ε, n) > 0 such that

n
∣

∣A
∣

∣

2 −H2

H2
≥ δ

(

1

nn
− K

Hn

)

.

Consider the functions as in [7] and [13]:

sκ(x) =
sinh(

√

|κ|x)
√

|κ|
=

sinh(ax)

a
, cκ(r) = s′κ(x),

taκ(x) =
sκ(x)

cκ(x)
, coκ(x) =

1

taκ(x)
.
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Denote rp the function “distance to p” in H
n+1
κ and use the notation ∂rp =

∇̄rp. And denote the component of ∂rp by ∂⊤rp tangent to Mt, which satisfies

∂rp = ∇(rp|Mn). Define the inner radius ρ− and the circumradius radius ρ+
by

ρ+(t) = inf{r : Br(q) encloses Mt for some q ∈ H
n+1
κ },

ρ−(t) = sup{r : Br(q) is enclosed by Mt for some q ∈ H
n+1
κ },

where Br(q) is the geodesic ball of radius r with centered at q. The following
well-known result for h-convex hypersurfaces in H

n+1
κ will be applied in later

sections.

Lemma 2.4. Let Ω be a compact h-convex domain, o the center of an inball

of Ω, ρ− its inner radius, and ρ+ its circumradius radius. Furthermore let

τ := taκ(
aρ−

2 ), then

i) The maximal distance max d(o, ∂Ω) between o and the points in ∂Ω
satisfies the inequality

maxd(o, ∂Ω) ≤ ρ− + a
ln(1 +

√
τ )2

1 + τ
< ρ− + a ln 2.

ii) For any interior point p of Ω, 〈ν, ∂rp〉 ≥ ataκ(dist((p, ∂Ω)), where dist

denotes the distance in the ambient space H
n+1
κ .

iii) There exists a constant C = C(a) > 0 such that

ρ+ ≤ C
(

ρ− +
√
ρ−
)

.

Proof. See ([6], Theorem 3.1) for the proof of i) and ii) in the lemma. As a
consequence of i) and ii) in the lemma, iii) in the lemma has been proved by
Makowski (see ([17], Theorem 5.2). �

Lemma 2.5. On any solutionMt of (1.1) the quantity K̃ satisfies the following

evolution equation:

∂tK̃ = βHβ−1∆K̃ − βHβ−1

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃
− βHβ−1K̃∇mh̃ji∇mb̃

i
j

+ β (β − 1)Hβ−2K̃∇iH̃∇jH̃b̃ij + (1− β)Hβ+1K̃ + βnHβ−1
∣

∣Ã
∣

∣

2
K̃

+ na(β + 1)HβK̃ + aβHβ−1
∣

∣Ã
∣

∣

2
K̃

n
∑

i=1

b̃ii

= βHβ−1

{

∆K̃ − (n− 1)

n

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃
+

K̃

H̃2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
(2.12)

− H̃2n

nK̃

∣

∣

∣
∇(K̃H̃−n)

∣

∣

∣

2

+
(β − 1)

H
K̃∇iH̃∇jH̃b̃ij

}

+ (1− β)Hβ+1K̃
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+ βnHβ−1
∣

∣Ã
∣

∣

2
K̃ + na(β + 1)HβK̃ + aβHβ−1

∣

∣Ã
∣

∣

2
K̃

n
∑

i=1

b̃ii,

where
∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
:= b̃knb̃

m
l

(

H̃∇ih̃
n
m − h̃nm∇iH̃

)(

H̃∇ih̃lk − h̃lk∇iH̃
)

.

Proof. By using (2.9), one has

∂tK̃ = ∂t det{h̃ji} = (∂th̃
j
i )b̃

i
jK̃

= K̃b̃ij

(

βHβ−1∆h̃ji + β (β − 1)Hβ−2∇iH̃∇jH̃ − (β − 1)Hβhki h̃
j
k

+ β
∣

∣Ã
∣

∣

2
Hβ−1hji + a(β + 1)Hβh̃ji

)

.

On the other hand, note that

∇mK̃ = K̃∇mh̃
j
i b̃

i
j,

which implies that

∆K̃ = ∇m∇mK̃

=

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃
+ K̃∆h̃ji b̃

i
j + K̃∇mh̃

j
i∇mb̃ij.

Therefore

∂tK̃ = βHβ−1∆K̃ − βHβ−1

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃
− βHβ−1K̃∇mh̃ji∇mb̃

i
j

+ β (β − 1)Hβ−2K̃∇iH̃∇jH̃b̃ij + (1− β)Hβ+1K̃

+ na(β + 1)HβK̃ + βHβ−1
∣

∣Ã
∣

∣

2
K̃hji b̃

i
j

= βHβ−1∆K̃ − βHβ−1

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃
− βHβ−1K̃∇mh̃ji∇mb̃

i
j

+ β (β − 1)Hβ−2K̃∇iH̃∇jH̃b̃ij + (1− β)Hβ+1K̃ + βnHβ−1
∣

∣Ã
∣

∣

2
K̃

+ na(β + 1)HβK̃ + aβHβ−1
∣

∣Ã
∣

∣

2
K̃

n
∑

i=1

b̃ii,

where the second equality was derived by using the equations

hki b̃
j
k = ab̃ji + δji .

The second equality of the lemma then follows from

∇mb̃
i
j = −b̃ik∇mh̃

k
l b̃

l
j ,
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K̃

H̃2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
= K̃b̃km∇ih̃

m
n b̃

n
l ∇ih̃lk − 2

〈

∇K̃,∇H̃
〉

H̃
+ nK̃

∣

∣∇H̃
∣

∣

2

H̃2
,

and

−2

〈

∇K̃,∇H̃
〉

H̃
+ nK̃

|∇H̃ |2
H̃2

= − H̃
2n

nK̃

∣

∣

∣
∇(K̃H̃−n)

∣

∣

∣

2

+

∣

∣

∣
∇K̃

∣

∣

∣

2

nK̃
.

�

Lemma 2.6. On any solutionMt of (1.1) the quantity Q̃ satisfies the following

evolution equation:

∂tQ̃ = βHβ−1

{

∆Q̃ +
(n+1)

nH̃n

〈

∇Q̃,∇H̃n
〉

− (n−1)

nK̃

〈

∇Q̃,∇K̃
〉

− H̃n

nK̃

∣

∣

∣
∇Q̃

∣

∣

∣

2

+
(β−1) Q̃

H
∇iH̃∇jH̃

(

b̃ij−
n

H̃
δij

)

+
Q̃

H̃2

∣

∣

∣
H̃∇ih̃

n
m−h̃nm∇iH̃

∣

∣

∣

2

g,b̃
(2.13)

+
(β−1)Q̃H

βH̃

(

n
∣

∣Ã
∣

∣

2−H̃2
)

+ aQ̃
∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)}

.

Proof. By (2.11) with l = n and (2.12)

∂tQ̃ =
1

H̃n
∂tK̃ − K̃

H̃2n
∂tH̃

n

= βHβ−1

{

∆K̃

H̃n
− K̃

H̃2n
∆H̃n − (n− 1)

n

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃H̃n
− H̃n

n

∣

∣

∣
∇(K̃H̃−n)

∣

∣

∣

2

K̃

+
(β−1)

H

K̃

H̃n
∇iH̃∇jH̃b̃ij−

n
(

(β−1)H̃ − (n−1)H
)

H

K̃
∣

∣

∣
∇(H̃)

∣

∣

∣

2

H̃n+2

+
K̃

H̃n+2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
(2.14)

+
K̃

H̃n

[

(1−β)
β

H2+n

(

1− H

βH̃

)

∣

∣Ã
∣

∣

2
+na

(β−1)

β
H+a

∣

∣Ã
∣

∣

2
n
∑

i=1

b̃ii

]}

.

Recall the relation H = H̃ + na, so that these terms in square bracket
[ ]

can
be computed as follows:

(1− β)

β
H2 + n

(

1− H

βH̃

)

∣

∣Ã
∣

∣

2
+na

(β − 1)

β
H + a

∣

∣Ã
∣

∣

2
n
∑

i=1

b̃ii

=
(1− β)

β
H(H − na) + n

(

1− H

H̃
− (1− β)

β

H

H̃

)

∣

∣Ã
∣

∣

2
+a
∣

∣Ã
∣

∣

2
n
∑

i=1

b̃ii

=
(1− β)

β
HH̃ + n

(

−na
H̃

)

∣

∣Ã
∣

∣

2
+n

(β − 1)

β

H

H̃

∣

∣Ã
∣

∣

2
+a
∣

∣Ã
∣

∣

2
n
∑

i=1

b̃ii
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=
(β − 1)H

βH̃

(

n
∣

∣Ã
∣

∣

2−H̃2
)

+ a
∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)

.(2.15)

On the other hand, the first derivative and second derivative term in the brace
{} can be computed as follows, the equality

∇i

(

K̃

H̃n

)

=
∇iK̃

H̃n
− K̃

H̃2n
∇iH̃

n

implies

∆

(

K̃

H̃n

)

= ∇i∇i

(

K̃

H̃n

)

=

∣

∣

∣
∇K̃

∣

∣

∣

2

H̃n
− 2

〈

∇H̃n,∇K̃
〉

H̃2n
+ 2

K̃

H̃3n
∇mH̃

n∇mH̃n − K̃

H̃2n
∆H̃n,(2.16)

∇i

(

K̃

H̃n

)

∇iH̃n =

〈

∇H̃n,∇K̃
〉

H̃n
− 2

K̃

H̃2n

∣

∣∇H̃n
∣

∣

2
,(2.17)

and

∇i

(

K̃

H̃n

)

∇iK̃ =

∣

∣∇K̃
∣

∣

2

H̃n
− K̃

H̃2n

〈

∇H̃n,∇K̃
〉

.(2.18)

From (2.16), (2.17) and (2.18), it follows

∆K̃

H̃n
− K̃

H̃2n
∆H̃n − (n− 1)

n

∣

∣

∣
∇K̃

∣

∣

∣

2

K̃H̃n

= ∆

(

K̃

H̃n

)

+
(n+ 1)

H̃n

〈

∇
(

K̃

H̃n

)

,∇H̃n

〉

(2.19)

− (n− 1)

nK̃

〈

∇
(

K̃

H̃n

)

,∇K̃
〉

− n(n− 1)
K̃

H̃n+2

∣

∣∇H̃n
∣

∣

2
.

Thus, equations (2.19) and (2.15) apply to (2.14) to give

∂tQ̃ = βHβ−1

{

∆

(

K̃

H̃n

)

+
(n+ 1)

H̃n

〈

∇
(

K̃

H̃n

)

,∇H̃n

〉

− (n− 1)

nK̃

〈

∇
(

K̃

H̃n

)

,∇K̃
〉

− H̃n

nK̃

∣

∣

∣

∣

∣

∇
(

K̃

H̃n

)
∣

∣

∣

∣

∣

2

+
(β − 1)

H

K̃

H̃n
∇iH̃∇jH̃

(

b̃ij −
n

H̃
δij

)

+
K̃

H̃n+2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
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+
(β − 1)H

βH̃

K̃

H̃n

(

n
∣

∣Ã
∣

∣

2−H̃2
)

+ a
K̃

H̃n

∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)}

,

which is (2.13). �

In order to apply the maximum principle to (2.13) and show that

min
p∈Mt

Q̃(p, t)

is non-decreasing in time some preliminary inequalities are needed in the sequel.
The following elementary property is a consequence of ([8], Lemma 4.2) (see
also [9] and [22]).

Lemma 2.7. For any ε ∈ (0, 1/n) and any λ̃ = (λ̃1, . . . , λ̃n) ∈ R
n with λ̃i > 0

for all i = 1, . . . , n, there exists a constant C = C(ε, n) ∈ (0, 1/nn) satisfies

Q̃(λ̃) > C

such that

λ̃min > εH̃(λ̃).

The following estimate which is a stronger version of Lemma 2.3(ii) in [14]
is also needed.

Lemma 2.8. If H̃ > 0 and the inequality h̃ji > εH̃δji is valid with some ε > 0
at a point on a hypersurface immersed in H

n+1
κ , then ε ≤ 1/n and

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

≥ n− 1

2
ε2H̃2

∣

∣

∣
∇Ã

∣

∣

∣

2

.

Proof. The proof of the lemma can be argued exactly as in ([8], Lemma 4.1),

only define h̃ji := hji − aδji at a point on a hypersurface immersed in H
n+1
κ . �

The preceding two lemmas allow us to prove the pinching estimate for our
flow, which is one of the key steps in the proof of our main result.

Theorem 2.9. There exists a constant C(n, β) ∈ (0, 1/nn) such that if the

initial hypersurface M0 satisfies (1.1) with the constant C(n, β), then the in-

equality Q̃ > C0 is preserved under the Hβ-flow in H
n+1
κ .

Proof. The evolution equation (2.10) of H̃ implies that if H̃ > 0 on initial

hypersurface H̃ > 0 for t > 0 under the Hβ-flow, then ensures that the quotient
Q̃ is well-defined for t > 0. For proof of the theorem, it is suffices to prove that
the minimum of Q̃ (denote by Q̃) is nondecreasing in time. To this purpose

applying the maximum principle to equation (2.13) for Q̃ gives

∂tQ̃ ≥ βHβ−1Q̃
{

1

H̃2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
+

(β − 1)

H
∇iH̃∇jH̃

(

b̃ij −
n

H̃
δij

)

+
1

β

(β − 1)H

H̃

(

n
∣

∣Ã
∣

∣

2−H̃2
)

+ a
∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)}
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≥ βHβ−1Q̃
{

1

H̃2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
− (β − 1)

H̃

∣

∣

∣
∇H̃

∣

∣

∣

2
∣

∣

∣

∣

b̃ij −
n

H̃
δij

∣

∣

∣

∣

+
1

β

(β − 1)H

H̃

(

n
∣

∣Ã
∣

∣

2−H̃2
)

+ a
∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)}

,(2.20)

where H̃ < H and Hölder inequality were used to compute the second inequal-
ity.

If the ratio of the biggest and smallest principal curvature at everywhere
on initial hypersurface is close enough to 1, then the various terms appearing
here can be estimated as follows. First, if the initial hypersurface is weakly h-
convex, Theorem 1.7 ii) implies thatMt underH

β-flow in H
n+1
κ remains strictly

h-convex. This implies that the third term of right hand side in inequality (2.20)
can be dropped with the strictly h-convexity on Mt. The last term can also be
dropped by the arithmetic-harmonic mean inequality,

n
∑

i=1

b̃ii −
n2

H̃
≥ 0

onMt. It remains to estimate the first two terms of right hand side in inequality
(2.20), now proceeding exactly as in [8], [9] and [22], choose orthonormal frame

which diagonalises W̃ so that
∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
=
∑

i,m,n

1

λ̃m

1

λ̃n

(

H̃∇ih̃
n
m − h̃nm∇iH̃

)2

≥ 1

H̃2

∑

i,m,n

(

H̃∇ih̃
n
m − h̃nm∇iH̃

)2

,(2.21)

where λ̃m ≤ H̃ was used in the last inequality by strictly h-convexity of Mt,
i.e., λ̃m > 0 for anym. Furthermore, h-convexity of a hypersurface and Lemma
2.8 imply that the inequality (2.21) can be estimated as follows:

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
≥ n− 1

2
ε2
∣

∣

∣
∇Ã

∣

∣

∣

2

for some ε ∈ (0, 1/n).(2.22)

A next step is to show that
∣

∣

∣
b̃ij − n

H̃
δij

∣

∣

∣
is small if the principal curvatures are

pinched enough. It is clear that
∣

∣

∣

∣

b̃ij −
n

H̃
δij

∣

∣

∣

∣

≤
√
nmax

{(

1

λ̃min

− n

H̃

)

,

(

n

H̃
− 1

λ̃max

)}

.

Since for some ε ∈ (0, 1/n)

(2.23) λ̃min ≥ εH̃,

then

(2.24)
1

λ̃min

− n

H̃
≤ 1− εn

εH̃
.
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On other hand, (2.23) gives

(2.25) λ̃max ≤ (1− (n− 1)ε) H̃

which implies that

(2.26)
n

H̃
− 1

λ̃max

≤ (n− 1) (1− nε)

H̃ (1− (n− 1)ε)
.

This combines with estimate (2.24) to give

(2.27)

∣

∣

∣

∣

b̃ij −
n

H̃
δij

∣

∣

∣

∣

≤ N (ε),

where

N (ε) =



















√
n(1− εn)

εH̃
, 0 < ε ≤ 1

2(n− 1)
,

√
n(n− 1) (1− nε)

H̃ (1− (n− 1)ε)
,

1

2(n− 1)
< ε <

1

n
.

Thus, the inequality
∣

∣

∣
∇H̃

∣

∣

∣

2

≤ n
∣

∣

∣
∇Ã
∣

∣

∣

2

, estimations (2.22) and (2.27) give:

1

H̃2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
− (β − 1)

H̃

∣

∣

∣
∇H̃

∣

∣

∣

2
∣

∣

∣

∣

b̃ij −
n

H̃
δij

∣

∣

∣

∣

≥

∣

∣

∣
∇Ã
∣

∣

∣

2

∣

∣H̃
∣

∣

2

(

n− 1

2
ε2 − n (β − 1)N (ε)

)

.(2.28)

To achieve our purpose by application of the maximum principle, it is needed
that N ′(ε) :=

(

n−1
2 ε2 − n (β − 1)N (ε)

)

is non-negative onMt. In fact, N (ε)
is a strictly decreasing function of ε; in addition, N (ε) is arbitrarily large as
ε goes to zero and tends to zero as ε goes to 1/n by its definition. Therefore,
N ′(ε) is a strictly increasing function of ε, it is negative as ε goes to zero and
positive as ε goes to 1/n. So there exists a unique value ε0 ∈ (0, 1/n) such that

(2.29) N
′(ε0) = 0.

By Lemma 2.7 there exists a constant C0 ∈ (0, 1/nn) satisfies Q̃(λ̃) > C0 such

that λ̃min > εH̃(λ̃) with a ε0 ∈ (0, 1/n) given by (2.29). Thus, if Q̃ > C0 ≥ 0

everywhere on the initial hypersurface, applying the maximum principle for Q̃
implies that ∂tQ̃ ≥ 0, i.e., Q̃ is nondecreasing in time. This guarantees that
Q̃ > C0 is preserved under the Hβ-flow in H

n+1
κ . �

3. The pinching estimate

This section will show that the principal curvature comes close together,
at least at those points where the mean curvature tends to infinity (for the
un-normalized equation (1.1)). To do so, let

f =
1

nn
− K̃

H̃n
.
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Then as remarked in Section 2, f ≥ 0 with equality holding only at umbilic
points.

Theorem 3.1. If β > 1 and the initial hypersurface of Hn+1
κ is pinched in the

sense that
K̃(p)

H̃n(p)
> C(n, β) for all p ∈Mn,

then there exist constants σ > 0 and C < +∞ depending only on M0 such that

1

nn
− K̃

H̃n
≤ CH̃−σ

for all time 0 ≤ t ≤ T under the flow (1.1).

The rest of this section will consist of proving Theorem 3.1. Our goal is
to bound the function fσ := H̃σf for sufficiently small σ. First, an evolution
equation for the quantity fσ is needed.

Lemma 3.2. For any σ, fσ has the evolution equation

∂tfσ = βHβ−1

{

∆fσ + 2

(

1− σ

(

1 + f
H̃n

K̃

))〈

∇fσ,
∇H̃
H̃

〉

+
H̃n−σ

K̃
|∇fσ|2

+ σ

(

−1 + (β − 1)
H̃

H
+ σ

(

1 + f
H̃n

K̃

))

fσ

∣

∣

∣
∇H̃

∣

∣

∣

2

H̃2

+ H̃σ

[

− (β − 1)

H

K̃

H̃n
∇iH̃∇jH̃

(

b̃ij −
n

H̃
δij

)

− K̃

H̃n+2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
+
σH

βH̃
f
∣

∣Ã
∣

∣

2
(3.1)

− K̃

H̃n

(β − 1)H

βH̃

(

n
∣

∣Ã
∣

∣

2−H̃2
)

− a
K̃

H̃n

∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)

+
2aσH

β
f

]}

.

Proof. From Lemma 2.6 and the evolution equation (2.11) of H̃σ it follows that

∂tfσ = H̃σ∂tf + f∂tH̃
σ

= βHβ−1

{

H̃σ∆f + f∆H̃σ + H̃σ

[

(n+ 1)

H̃n

〈

∇f,∇H̃n
〉

− (n− 1)

nK̃

〈

∇f,∇K̃
〉

− H̃n

nK̃
|∇f |2 +

σ
(

(β−1) H̃−(σ−1)H
)

H
f

∣

∣

∣
∇H̃

∣

∣

∣

2

H̃2
(3.2)

− (β − 1)

H

K̃

H̃n
∇iH̃∇jH̃

(

b̃ij −
n

H̃
δij

)

− K̃

H̃n+2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
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+
(β − 1)H

βH̃

K̃

H̃n

(

n
∣

∣Ã
∣

∣

2−H̃2
)

+
σH

βH̃
f
∣

∣Ã
∣

∣

2

− a
K̃

H̃n

∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)

+
2aσH

β
f

]}

.

Furthermore

∇ifσ = H̃σ∇if + σfH̃σ−1∇iH̃,

∇iK̃ =

(

nK̃

H̃
+ σfH̃σ−1

)

∇iH̃ − fH̃n−σ∇ifσ,

∆fσ = H̃σ∆f + f∆H̃σ + 2σH̃σ−1
〈

∇f,∇H̃
〉

,(3.3)

H̃σ
〈

∇f,∇H̃
〉

=
〈

∇fσ,∇H̃
〉

− σfσ

H̃2

∣

∣

∣
∇H̃

∣

∣

∣

2

,(3.4)

〈

∇f,∇K̃
〉

= H̃−σ

(

nK̃

H̃
+ 2σfH̃σ−1

)

〈

∇fσ,∇H̃
〉

,(3.5)

−
(

nK̃ + σfH̃n
) σf

H̃2

∣

∣

∣
∇H̃

∣

∣

∣

2

− H̃n−σ |∇fσ|2 ,

|∇f |2 = H̃−2σ |∇fσ|2 − 2σfσH̃
−2σ−1

〈

∇fσ,∇H̃
〉

(3.6)

+ nσ2f2
σH̃

−2σ
∣

∣

∣
∇H̃

∣

∣

∣

2

.

Using identities (3.3), (3.4), (3.5), and (3.6) a direct calculation gives

H̃σ∆f + f∆H̃σ + H̃σ

[

(n+ 1)

H̃n

〈

∇f,∇H̃n
〉

− (n− 1)

nK̃

〈

∇f,∇K̃
〉

− H̃n

nK̃
|∇f |2 +

σ
(

(β − 1) H̃ − (σ − 1)H
)

H
f

∣

∣

∣
∇H̃

∣

∣

∣

2

H̃2

]

= ∆fσ + 2

(

1− σ

(

1 + f
H̃n

K̃

))〈

∇fσ,
∇H̃
H̃

〉

+
H̃n−σ

K̃
|∇fσ|2(3.7)

+ σ

(

−1 + (β − 1)
H̃

H
+ σ

(

1 + f
H̃n

K̃

))

fσ

∣

∣

∣
∇H̃

∣

∣

∣

2

H̃2
.

Identity (3.7) applies to (3.2) to give (3.1). �
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Proof of Theorem 3.1. In order to apply the maximum principle to (3.1) for
fσ, the following inequality is needed:

σ

(

−1 + (β − 1)
H̃

H
+ σ

(

1 + f
H̃n

K̃

))

f

∣

∣

∣
∇H̃

∣

∣

∣

2

H̃2

− (β − 1)

H

K̃

H̃n
∇iH̃∇jH̃

(

b̃ij −
n

H̃
δij

)

− K̃

H̃n+2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
(3.8)

+
σH

βH̃
f
∣

∣Ã
∣

∣

2− K̃

H̃n

(β − 1)H

βH̃

(

n
∣

∣Ã
∣

∣

2−H̃2
)

− a
K̃

H̃n

∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii −
n2

H̃

)

+
2aσH

β
f ≤ 0.

Since on the initial hypersurface Q̃ = K̃(p)/H̃n(p) > C(n, β), then this remains
so on Mt for any t > 0 by Theorem 2.9. Thus, as in the proof of Theorem 2.9
(see inequality (2.28)), there exists a constant ε(> ε0) such that

− (β − 1)

H

K̃

H̃n
∇iH̃∇jH̃

(

b̃ij −
n

H̃
δij

)

− K̃

H̃n+2

∣

∣

∣
H̃∇ih̃

n
m − h̃nm∇iH̃

∣

∣

∣

2

g,b̃
(3.9)

≤ − C(n, β)N ′(ε)

∣

∣

∣
∇Ã
∣

∣

∣

2

∣

∣H̃
∣

∣

2

≤ − 1

n
C(n, β)N ′(ε)

∣

∣

∣
∇H̃

∣

∣

∣

2

∣

∣H̃
∣

∣

2 ,

where the inequality 1
n

∣

∣

∣
∇H̃

∣

∣

∣

2

≤
∣

∣

∣
∇Ã
∣

∣

∣

2

on a convex hypersurface was used to

obtain the last inequality. Thus, since
∣

∣

∣

∣

∣

−1 + (β − 1)
H̃

H
+ σ

(

1 + f
H̃n

K̃

)
∣

∣

∣

∣

∣

f

always can be bounded on the hypersurfaces Mt for any t > 0, choosing σ
small enough implies that the first order derivative terms in the left hand side

of (3.8) can be made non-positive. With the aid of H = H̃ + na, H̃2 ≤ n
∣

∣Ã
∣

∣

2
,

the arithmetic-harmonic mean inequality, Lemma 2.3 and Theorem 2.9, the
rest of terms in the left hand side of (3.8) can be estimated as follows:

σH

βH̃
f
∣

∣Ã
∣

∣

2− (β−1)H

βH̃

K̃

H̃n

(

n
∣

∣Ã
∣

∣

2−H̃2
)

−a K̃
H̃n

∣

∣Ã
∣

∣

2

(

n
∑

i=1

b̃ii−
n2

H̃

)

+
2aσH

β
f

≤ σ

β

(

1 +
na

H̃

)

f
∣

∣Ã
∣

∣

2−C0(n, β)δ
(β − 1)

β

(

1 +
na

H̃

)

f
∣

∣

∣
H̃
∣

∣

∣

2

+
2aσH

β
∣

∣Ã
∣

∣

2 f
∣

∣Ã
∣

∣

2
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≤ σ

β

(

1 +
na

H̃

)

f
∣

∣Ã
∣

∣

2−C0(n, β)δ
(β − 1)

β

(

1 +
na

H̃

)

f
∣

∣

∣
Ã
∣

∣

∣

2

+
2aσ

β

(√
n

∣

∣Ã
∣

∣

+
na
∣

∣Ã
∣

∣

2

)

f
∣

∣Ã
∣

∣

2

≤ 1

β

{

−C0(n, β)δ(β−1)

(

1+
na

H̃

)

+σ

[

(

1 +
na

H̃

)

+2a

(√
n

∣

∣Ã
∣

∣

+
na
∣

∣Ã
∣

∣

2

)]}

f
∣

∣Ã
∣

∣

2
.

Furthermore, choosing σ even smaller implies that

−C0(n, β)δ(β − 1)

(

1 +
na

H̃

)

+ σ

[

(

1 +
na

H̃

)

+ 2a

(√
n

∣

∣Ã
∣

∣

+
na
∣

∣Ã
∣

∣

2

)]

≤ 0.

Now, applying the maximum principal to (3.1) for fσ shows that there exists
a σ > 0 such that

fσ (p, t) ≤ max
p∈Mn

fσ (p, 0) , ∀ (p, t) ∈M × [p, T ) ,

which concludes the proof. �

4. The normalized equation

As we have seen in [13], the solution of the un-normalized equation (1.1)
shrinks down to a single point q0 in H

n+1
κ after a finite time. Note that q0

lays in the region enclosed by Mt for all times 0 ≤ t ≤ T . Since it is shown in
Sections 2 and 3 that the initial pinching is preserved under the initial condi-
tions and that it improves as the curvature becomes large, thus for t close to
T all quantities arising from the metric of the hyperbolic space are negligible
compared to the curvatures of the hypersurface. Then in this section we can
follow the same way as in the Euclidean case ([1], [14] and [22]) to consider a
natural normalized equation of the evolution equation (1.1) by keeping some
geometrical quantity fixed, for example the total area of the normalized hyper-
surfaces which equals to the same area of the unit geodesic sphere of Hn+1

κ ,

i.e., the total area A(M̂t) = A(M̂0), where the geometric quantities associated
with the normalized immersions are distinguished by a hat. The next section
follows closely Section 7 of [1] and Section 6 of [2].

Let α = (β + 1)nβ , ψ(t) = (α(T − t))
−1/(β+1)

, multiply the solution X of
(1.1) at each time 0 ≤ t ≤ T with a positive constant ψ(t) such that the

hypersurface M̂t is given by

X̂(·, t) = ψ(t)(X(·, t) − q0).

Define a new time parameter t̂ by t̂ := − 1
α
ln
(

1− t
T

)

such that

(4.1)
dt̂

dt
= (ψ(t))β+1.
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A direct calculation shows that the following equation is satisfied for t̂ in the
interval [0,+∞):

(4.2) ∂t̂X̂(·, t̂) = −Ĥβ · ν̂ + nβX̂(p, t̂).

The following evolution equations for various geometric quantities along the
normalized flow can be obtained.

Theorem 4.1. On any solution M̂t̂ of (4.2) the following hold:

∂t̂ĝij = − 2Ĥβĥij + 2nβ ĝij ,(4.3)

∂t̂ν̂ = βĤβ−1∇̂Ĥ,(4.4)

∂t̂(dµ̂t̂) = − Ĥβ+1dµ̂t̂ + nβ+1dµ̂t̂,(4.5)

∂t̂ĥij = βĤβ−1∆̂ĥij + β(β − 1)Ĥβ−2∇̂iĤ∇̂jĤ − (β + 1)Ĥβĥki ĥkj(4.6)

+ β
(

∣

∣Â
∣

∣

2
+ na2

)

Ĥβ−1ĥij − a2(β + 1)Ĥβ ĝij

+ nβ ĥij + a2nβ
〈

X̂, ν̂
〉

ĝij ,

∂t̂ĥ
j
i = βĤβ−1∆̂ĥji + β(β − 1)Ĥβ−2∇̂iĤ∇jĤ − (β − 1)Ĥβĥki ĥ

j
k(4.7)

+ β
(

∣

∣Â
∣

∣

2
+ na2

)

Ĥβ−1ĥji − a2(β + 1)Ĥβδji ,

− nβ ĥji + a2nβ
〈

X̂, ν̂
〉

δji ,

∂t̂Ĥ = βĤβ−1∆̂Ĥ + β(β − 1)Ĥβ−2|∇̂Ĥ |2 +
(

∣

∣Â
∣

∣

2 − na2
)

Ĥβ(4.8)

− nβĤ + a2nβ+1
〈

X̂, ν̂
〉

,

= ∆̂Ĥβ +
(

∣

∣Â
∣

∣

2 − na2
)

Ĥβ − nβĤ + a2nβ+1
〈

X̂, ν̂
〉

,

∂t̂Ĥ
l = βĤβ−1∆̂Ĥ l+lβ(β−l)Ĥβ+l−3

∣

∣∇̂Ĥ
∣

∣

2
+l
(

∣

∣Â
∣

∣

2−na2
)

Ĥβ+l−1(4.9)

− lnβĤ l + a2lnβ+1
〈

X̂, ν̂
〉

Ĥ l−1, l ∈ R.

Proof. Since the metric 〈·, ·〉 on H
n+1
κ is independent of time,

∂t̂ĝij = ∂t̂

〈

∇̄iX̂, ∇̄jX̂
〉

=
〈

∂t̂∇̄iX̂, ∇̄jX̂
〉

+ (i↔ j)

=
〈

∇̄i

(

−Ĥβ · ν̂ + nβX̂
)

, ∇̄jX̂
〉

+ (i↔ j)

= −Ĥβ
〈

∇̄iν̂, ∇̄jX̂
〉

+ nβ
〈

∇̄iX̂, ∇̄jX̂
〉

+ (i↔ j)

= −2Ĥβĥij + 2nβ ĝij
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using the definitions of the first and the second fundamental form. The evolu-
tion of the unit normal to M̂t̂ is a straightforward computation:

∂t̂ν̂ =
〈

∇̄iX̂, ∂t̂ν̂
〉

∇̄jX̂ĝ
ij

= −
〈

∂t̂∇̄iX̂, ν̂
〉

∇̄jX̂ĝ
ij

= −
〈

∇̄i

(

−Ĥβ · ν̂ + nβX̂
)

, ν̂
〉

∇̄jX̂ĝ
ij

= ∇̄iĤ
β∇̄jX̂ĝ

ij

= ∇̂Ĥβ

= βĤβ−1∇̂Ĥ.

The time derivative of the measure dµ̂t̂ =
√

det ĝijdx̂ on M̂t̂ can be easily
derived from (4.3).

Denote ∇̄iX̂ by êi for all i = 1, . . . , n. First, the evolution of the normalized

second fundamental {ĥij} can be calculated from the definition of {ĥij} and
the evolving equation (4.4) as follows:

∂t̂ĥij =− ∂t̂
〈

∇̄êi êj , ν̂
〉

=−
〈

∇̄X̂∗(∂t̂
)∇̄êi êj, ν̂

〉

−
〈

∇̄êi êj , ∂t̂ν̂
〉

=−
〈

∇̄êi∇̄X̂∗(∂t̂
)êj, ν̂

〉

−
〈

R̄
êi,X̂∗(∂t̂

)êj, ν̂
〉

−
〈

∇̄êi êj, ∇̂Ĥβ
〉

=−
〈

∇̄êi∇̄êj

(

−Ĥβ · ν̂ + nβX̂
)

, ν̂
〉

−
〈

R̄êi,−Ĥβ ·ν̂+nβX̂(p,t̂)êj, ν̂
〉

−
〈

∇̄êi êj , êk
〉

∇̂lĤ
β ĝkl

=∇̂i∇̂jĤ
β −

〈

∇̂êi êj , êk

〉

∇̂lĤ
β ĝkl − Ĥβ

〈

∇̄iν̂, ∇̄j ν̂
〉

− nβ
〈

∇̄êi êj, ν̂
〉

+ ĤβR̄i0j0 − nβX̂γĤβR̄iγj0

=Hess∇̄Ĥ
β(êi, êj)− Ĥβ ĥikĥ

k
j + nβ ĥij + ĤβR̄i0j0 + nβX̂γĤβR̄iγj0,

where X̂ = X̂γ êγ , γ = 0, 1, . . . , n and ν̂ is arranged to be ê0. Thus, the desired
equation (4.6) follows from Simons’ identity (see [23] for a proof or see also [20]
for a simple derivation) which is a consequence of the equations of Gauß and
Codazzi:

∆̂ĥij = ∇̂i∇̂jĤ + Ĥĥikĥ
k
j −

∣

∣Â
∣

∣

2
ĥij + ĤR̄i0j0 − ĥijR̄

k
0k0

+ ĥjkR̄
k
li
l + ĥikR̄

k
lj
l − 2ĥklR̄i

k
j
l + ∇̄jR̄

k
0ki + ∇̄kR̄i0

k
j

and having into account that in our case the background space is a hyperbolic
space, the ambient space is locally symmetric (∇̄R̄ = 0) and the Riemann
curvature tensor of the ambient space takes the form

R̄αβγδ = −a2(ḡαγ ḡβδ − ḡαδḡβγ).
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The evolution equations (4.7), (4.8) and (4.9) can be easily derived from the
evolution equations (4.3) and (4.6). �

From the definition of ψ(t) and the relation (4.1) it follows that

(4.10)
dψ(t̂)

dt̂
= nβψ(t̂)

and

(4.11)
dψ−1(t̂)

dt̂
= −nβψ−1(t̂).

Thus, the normalized turbulent second fundamental form is given by

(4.12)
ˆ̃
hij = ĥij − aψ−1ĝij ,

which implies that

(4.13) ˆ̃H = Ĥ − naψ−1

and

(4.14)
∣

∣

ˆ̃A
∣

∣

2
=
∣

∣Â
∣

∣

2
+ na2ψ−2 − 2aψ−1Ĥ.

From (4.10), (4.11), (4.12), (4.13), (4.14) and Theorem 4.1 the following theo-
rem can be obtained by computations similar to those in Theorem 4.1 above.

Theorem 4.2. On any solution M̂t̂ of (4.2) the following hold:

∂t̂
ˆ̃
hij = βĤβ−1∆̂

ˆ̃
hij + β(β − 1)Ĥβ−2∇̂i

ˆ̃H∇̂j
ˆ̃H − (β + 1)Ĥβ ĥki

ˆ̃
hkj(4.15)

+ β
(

∣

∣

ˆ̃A
∣

∣

2
+ na2

(

1− ψ−2
)

)

Ĥβ−1ĥij + a(β + 1)ψ−1Ĥβ ˆ̃hij

+ nβ ˆ̃hij + a2nβ
〈

X̂, ν̂
〉

ĝij + a2(β + 1)
(

ψ−2 − 1
)

Ĥβ ĝij ,

∂t̂
ˆ̃
hji = βĤβ−1∆̂

ˆ̃
hji + β(β − 1)Ĥβ−2∇̂i

ˆ̃H∇j ˆ̃H − (β − 1)Ĥβĥki
ˆ̃
hjk(4.16)

+ β
(

∣

∣

ˆ̃A
∣

∣

2
+ na2

(

1− ψ−2
)

)

Ĥβ−1ĥji + a(β + 1)ψ−1Ĥβ ˆ̃hji

− nβ ˆ̃hji + a2nβ
〈

X̂, ν̂
〉

δji + a2(β + 1)
(

ψ−2 − 1
)

Ĥβδji ,

∂t̂
ˆ̃H = βĤβ−1∆̂ ˆ̃H + β(β − 1)Ĥβ−2|∇̂ ˆ̃H |2 + Ĥβ

∣

∣

ˆ̃A
∣

∣

2
+ 2aψ−1Ĥβ ˆ̃H(4.17)

− na2
(

1− ψ−2
)

Ĥβ − nβ ˆ̃H + a2nβ+1
〈

X̂, ν̂
〉

,

∂t̂
ˆ̃H l = βĤβ−1∆̂ ˆ̃H l + lβ[(β − 1) ˜̃H − (l − 1)Ĥ] ˆ̃H l−2Hβ−2|∇̂ ˆ̃H |2(4.18)

+ lĤβ ˆ̃H l−1
∣

∣

ˆ̃A
∣

∣

2
+ 2alψ−1Ĥβ ˆ̃H l − na2l

(

1− ψ−2
)

Ĥβ

− lnβ ˆ̃H l + a2lnβ+1
〈

X̂, ν̂
〉

ˆ̃H l−1, l ∈ R.
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Denote the normalized quantity det{ˆ̃hji} for the turbulent Gauß curvature

K̃ = det{h̃ji} by ˆ̃K. Since the M̂t̂ remains strictly convex along the normalized

flow (4.2) for t > 0, i.e., ˆ̃hij > 0, the inverse of the normalized turbulent

Weingarten map {ˆ̃bij} = {ˆ̃hij}−1 is well-defined. From (4.16) the evolution

equation for ˆ̃K along the normalized flow is easily derived in the same way as
the un-normalized equation.

Lemma 4.3. On any solution M̂t̂ of (4.2) the quantity ˆ̃K satisfies the following

evolution equation:

∂t
ˆ̃K = βĤβ−1

{

∆̂ ˆ̃K − (n− 1)

n

∣

∣

∣
∇̂ ˆ̃K

∣

∣

∣

2

ˆ̃K
+

ˆ̃K

ˆ̃H2

∣

∣

∣

ˆ̃H∇̂i
ˆ̃H
n

m − ˆ̃H
n

m∇̂i
ˆ̃H
∣

∣

∣

2

ĝ,
ˆ̃
b

−
ˆ̃H2n

n ˆ̃K

∣

∣

∣
∇̂( ˆ̃K ˆ̃H−n)

∣

∣

∣

2

+
(β − 1)

Ĥ

ˆ̃K∇̂i
ˆ̃H∇̂j ˆ̃H

ˆ̃
bij +

(1− β)

β
Ĥ2 ˆ̃K

+ a
(

∣

∣

ˆ̃A
∣

∣

2
+ na2

(

1− ψ−2
)

)

ˆ̃K

(

n+ aψ−1
n
∑

i=1

ˆ̃
bii

)

+
naψ−1(β + 1)

β
Ĥ ˆ̃K

}

− nβ+1 ˆ̃K + a2nβ
〈

X̂, ν̂
〉

ˆ̃K
n
∑

i=1

ˆ̃bii.

(4.19)

5. Convergence to a unit geodesic sphere

To finish the proof of Theorem 1.8 observe that it remains to deal with the
issues related to the convergence of the normalized flow. This section will show
that the normalized hypersurfaces M̂t̂ along the normalized flow (4.2) converge

to a unit geodesic sphere of Hn+1
κ in the C∞-topology as t̂→ +∞.

It is useful to bound the normalized inner radius ρ̂−(t̂) and the normalized

circumradius radius ρ̂+(t̂) of M̂t̂ for t̂ > 0.

Lemma 5.1. There exists a constant 0 < C1 = C1(a,M0) such that on M̂t̂

along the normalized flow (4.2) for all t̂ ≥ 0

1

C1
≤ ρ̂− ≤ 1 ≤ ρ̂+ ≤ C1.

Proof. Let Br(o) be the geodesic ball of radius r with centered at o. Since along

the normalized flow the total area of M̂t̂ satisfies that A(M̂t̂) = A(B1(o)) = A0,
the formulas for the total area of Br̂(o)

A(Br(o)) = snκ(r)A(S
n),
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where A(Sn) is the total area of the unit sphere Sn in R
n+1, and the inequality

A(Bρ−
(o)) ≤ A0 ≤ A(Bρ+

(o)) implies that

(5.1) ρ̂− ≤ 1 ≤ ρ̂+.

Firstly, choosing a bigger t̂0 for t̂ > t̂0, by grouping (5.1) and Lemma 2.4 iii)

it follows that there exists a positive constant Ĉ = C(aψ−1(t̂)) < C(a) (argue
similarly as in Theorem 3.1 of [6] by replacing aψ−1 to a) and

(5.2) 1 ≤ ρ̂+ ≤ Ĉ
(

ρ̂− +
√

ρ̂−
)

≤ 2C
√

ρ̂−,

which is

(5.3) ρ̂− ≥
(

1

2C

)2

.

Combining (5.1) and (5.2) it shows that

(5.4) ρ̂+ ≤ 2C.

Note that ψ−1(t̂) ≤ ψ−1(0), the same argument on [0, t̂0] also gives (5.3) and
(5.4). Therefore taking the constant C1 as

C1 = max
{

4C2, 2C
}

gives our conclusion. �

The above lemma allows us to obtain a uniform bound on the normalized
mean curvature Ĥ(t̂) for all t̂ ≥ 0. For this purpose, following the procedure of
[1], [7], [18] and [24], we consider again the evolution under (4.2) of the function

(5.5) Ẑt̂ =
Ĥβ

Ψ − ǫ′
,

where Ψ =
〈

ν̂, X̂
〉

and ǫ′ is a constant to be chosen later. Using Theorem 4.1 a

routine computation in the same way as the un-normalized equation gives the
evolution equation for Ẑt̂ along the normalized flow (4.2).

Lemma 5.2. For t̂ ∈ [0,+∞) and any constant ǫ′,

∂t̂Ẑ = βĤβ−1∆̂Ẑ +
2βĤβ−1

Ψ − ǫ′

〈

∇̂Ẑ, ∇̂Ψ
〉

+

(

(β + 1)− ǫ′β

∣

∣Â
∣

∣

2

Ĥ

)

Ẑ2

− nβa2Ĥβ−1Ẑ − βnβẐ +

(

nβa2

Ĥ
− 1

Ψ− ǫ′

)

nβΨẐ.

(5.6)

Proof. The equations (4.2) and (4.4) imply that

(5.7) ∂t̂Ψ = −Ĥβ + nβ
〈

X̂, ν̂
〉

+ βĤβ−1
〈

X̂, ∇̂Ĥ
〉

.

A straightforward computation gives

(5.8) ∆̂Ψ = Ĥ +
〈

X̂, ∇̂Ĥ
〉

−
∣

∣Â
∣

∣

2
Ψ.
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By substitution of this expression in (5.7), the evolution equation of Ψ can be
obtained:

(5.9) ∂t̂Ψ = βĤβ−1∆̂Ψ− (β + 1)Ĥβ + nβΨ+ βĤβ−1
∣

∣Â
∣

∣

2
Ψ.

Thus, from (4.9) with l = β and (5.9), it follows

∂t̂Ẑ =
βĤβ−1

Ψ− ǫ′
∆̂Ĥβ − βĤ2β−1

(Ψ− ǫ′)2
∆̂Ψ +

(

(β + 1)− ǫ′β

∣

∣Â
∣

∣

2

Ĥ

)

Ẑ2

− nβa2Ĥβ−1Ẑ − βnβẐ +

(

nβa2

Ĥ
− 1

Ψ− ǫ′

)

nβΨẐ.

(5.10)

Another computation shows that

βĤβ−1∆̂Ĥβ

Ψ− ǫ′
− βĤ2β−1∆̂Ψ

(Ψ− ǫ′)2
= βĤβ−1∆̂Z + 2

βĤβ−1

Ψ− ǫ′
〈∇̂Z, ∇̂Ψ〉.(5.11)

Therefore the equation (5.10) can be manipulated into the desired form (5.6)
by combining (5.11) with (5.10). �

Proposition 5.3. Let M̂t̂ be a solution of the normalized flow (4.2) in H
n+1
κ .

There exists a positive constant such that

Ĥ(p, t̂) ≤ C(M̂0, β, n, a) for all (p, t̂) ∈Mn × [0,+∞).

Proof. For any fixed t̂ ∈ [0,+∞), the convexity of the M̂t̂ implies

ρ̂− ≤ Ψ =
〈

ν̂, X̂
〉

≤ ρ̂+.

Moreover, having into account Lemma 5.1, this gives

1

C1
≤ Ψ ≤ C1.

Thus, taking the constant ǫ′ in the definition (5.1) of Ẑ as

ǫ′ =
1

2C1

implies

(5.12) C1 − ǫ′ > Ψ− ǫ′ ≥ ǫ′ > 0.

Combining this, convexity of M̂t̂ implies that

(5.13) Ẑ ≥ 0, and
∣

∣Â
∣

∣

2 ≥ 1

n
Ĥ2.

From Lemma 5.2, (5.12) and (5.13) the following inequality can be obtained:

∂t̂Ẑ ≤ βĤβ−1∆̂Ẑ +
2βĤβ−1

Ψ− ǫ′

〈

∇̂Ẑ, ∇̂Ψ
〉

+

(

(β + 1)− ǫ′β
Ĥ

n

)

Ẑ2

+

(

nβa2

Ĥ
− 1

C1 − ǫ′

)

nβΨẐ.

(5.14)
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Assume that in (p0, t̂0), Z attains a big maximum C ≫ 0 for the first time.
Then

Hβ(p0, t̂0) ≥ C(Ψ− ǫ′)(p0, t̂0) ≥ ǫ′C,

which gives a contradiction if

C ≥ max
p∈Mn

{

Ẑ(p, 0),
1

ǫ′

(

n(β + 1)

ǫ′β

)β

,
1

ǫ′
(

nβa2 (C1 − ǫ′)
)β

}

.
�

To prove our result, a key step is to obtain a Harnack inequality or a Hölder
estimate which is uniform in time on the curvature. Such an estimate implies
that if the curvature is positive at a given point of our hypersurface, then it
also satisfies a uniform positive lower bound in a whole neighborhood and so
guarantees uniform parabolicity. However, it is hard to derive this type of
inequalities, which has been pointed out by Schulze in [22], since the speed for
the flow has a homogeneity degree larger than one in the curvatures. Schulze in
[22] (see also [8] for details) has also realized that in contrast with the standard

Laplacian ∆̂, the operators βĤβ−1∆̂ which appear in the evolution equations
become degenerate if the curvatures approach zero. In fact, following [22], the

evolution equation for Ĥ can be view as a porous medium equation, see the
second form in the evolution equation (4.8), and an interior Hölder estimate for
solutions of such equations has been established by DiBenedetto and Friedman
([11], Theorem 1.2).

Lemma 5.4. For a normalized flow (4.2), there exists a constant Ĉ satisfying

∫ t̂2

t̂1

∫

M̂
t̂

∣

∣∇̂Ĥβ
∣

∣

2
dµ̂t̂dt̂ ≤ Ĉ

(

1 + t̂2 − t̂1
)

for 0 ≤ t̂1 < t̂2 < +∞.

Proof. Applying the evolution equations (4.5), (4.9) with l = β + 1 and inte-
gration by parts gives

d

dt̂

∫

M̂
t̂

Ĥβ+1dµ̂t̂ =

∫

M̂
t̂

∂t̂Ĥ
β+1dµ̂t̂ +

∫

M̂
t̂

Ĥβ+1∂t̂(dµ̂t̂)

= − (β + 1)

∫

M̂
t̂

∣

∣∇̂Ĥβ
∣

∣

2
dµ̂t̂

+

∫

M̂
t̂

Ĥ2β
(

(β + 1)
(

∣

∣Â
∣

∣

2 − na2
)

− Ĥ2
)

dµ̂t̂

+ (n−β−1)nβ

∫

M̂
t̂

Ĥβ+1dµ̂t̂+ (β+1)nβ+1a2
∫

M̂
t̂

ĤβΨdµ̂t̂,

which is

∫

M̂
t̂

∣

∣∇̂Ĥβ
∣

∣

2
dµ̂t̂ = − 1

β + 1

d

dt̂

∫

M̂
t̂

Ĥβ+1dµ̂t̂

(5.15)
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+
1

β + 1

∫

M̂
t̂

Ĥ2β
(

(β + 1)
(

∣

∣Â
∣

∣

2 − na2
)

− Ĥ2
)

dµ̂t̂

+
(n− β − 1)nβ

β + 1

∫

M̂
t̂

Ĥβ+1dµ̂t̂ + nβ+1a2
∫

M̂
t̂

ĤβΨdµ̂t̂.

Since M̂t̂ is convex along the normalized flow the last term on the right hand
side of (5.15) can be estimated:

nβ+1a2
∫

M̂
t̂

ĤβΨdµ̂t̂ ≤ nβ+1a2Ĥβ
max

∫

M̂
t̂

Ψdµ̂t̂

≤ C1n
β+1a2Ĥβ

maxs
n
κ(1)A(S

n).

As remarked earlier,
∣

∣Â
∣

∣ ≤
∣

∣Ĥ
∣

∣ and Ĥ is uniformly bounded, so that the second,
the third and the last term on the right hand side of (5.15) can be bounded by
a positive constant. Therefore, after integrating (5.15) from t̂1 to t̂2 applying
these facts above gives the conclusion of Lemma 5.4. �

Proposition 5.5. For any point (p, t̂) ∈ M × (0,+∞), there exists a space-

time neighborhood U ⊂ M × (0,+∞), whose diameter does not depend on the

point (p, t̂) and such that
∥

∥Ĥ
∥

∥

Cα(U)
≤ C

for some positive constants C = C(n, a, β, M̂0) and α ∈ (0, 1).

Proof. For any point (p0, t̂0) ∈ M × (0,+∞), Lemma 5.1 implies that there is

a q0 ∈M × (0,+∞) such that M̂t̂0
encloses B1/C1

(q0), where B1/C1
(q0) is the

geodesic ball of radius 1/C1 centered at q0 in H
n+1
κ . Proposition5.3 tells us that

the speed of the normalized flow (4.2) is uniformly bounded. Then there exists

η > 0 (depending only on Hmax) such that M̂t̂0
encloses B1/2C1

(q0) for all t̂ ∈
(

max{t̂0 − η, 0},min{t̂0 − η, T }
)

. Since along the flow (4.2) ĥij > aψ−1ĝij ≥ 0,

i.e., hypersurfaces M̂t̂ are strictly convex for t̂ > 0, which yields
〈

ν̂, X̂− q0

〉

≥ 1

2C1

for all (p, t̂) ∈ M ×
(

max{t̂0 − η, 0},min{t̂0 − η, T }
)

. As a consequence of the
fact ρ̂+ ≤ C1 and Hadamard’s theorem in the hyperbolic space, for a proof see
[12, Theorem 10.3.1]. there is a constant ζ > 0, 2ζ < η, such that such evolving

hypersurfaces M̂t̂ ∩ expq0 S
n
ζ (q0), where S

n
ζ (q0) ⊂ Tq0H

n+1
κ with radius ζ, can

be represent as a graph over a function r(u, t̂) on S
n
ζ (q0), which is uniformly

bounded in C2. Here recall some basic formulae relating quantities over M̂t̂

satisfying M̂t̂ = graphr(t̂). For each t̂, regard rq0 as a function on S
n. Let D

be the Levi-Civita connection on S
n. Then a local coordinate vector field of

M̂t̂ has the following representation

(5.16) X̂t̂∗(
∂

∂ui
) = Dir(u)∂rp + sκ(r(u))ei, 1 ≤ i ≤ n,
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and the outward unit normal vector of M̂t̂ can be expressed as

(5.17) ν̂ =
1

|ξ|
(

sκ(r)∂rp −
n
∑

i=1

Direi

)

with

(5.18) |ξ| =
√

s2κ(r) + |Dr|2.

After a standard computation, the second fundamental form of M̂t̂ can be
expressed as

(5.19) ĥij = − 1

|ξ|
(

sκ(r)DjDir − s2κ(r)cκ(r)σij − 2cκ(r)DirDjr
)

,

and the metric ĝij is

(5.20) ĝij = DirDjr + s2κ(r)σij .

From this, the inverse metric can be expressed as

(5.21) ĝij =
1

s2κ(r)

(

σij − 1

|ξ|2
DirDjr

)

,

where Dir = σijDjr. Then equations (5.19) and (5.21) imply that

(5.22) Ĥ = − 1

|ξ| sκ(r)
(

∆Sr −
1

|ξ|2
∇2

Sr(Dr,Dr)
)

+
cκ(r)

|ξ|
(

n+
|Dr|2

|ξ|2
)

.

Using (5.20) and (5.21) the Christoffel symbols have the expression:

Γ̂k
ij =

1

s2κ(r)

[

DiDjrDlr + sκ(r)cκ(r)
(

Dirσlj +Djrσil −Dlrσij
)

]

·
(

σkl − 1

|ξ|2
DkrDlr

)

.

(5.23)

Thus, in local coordinates the Laplacian ∆̂ can be represented as:

∆̂ = ĝij
(

DiDj − Γ̂k
ijDk

)

= Di

(

ĝijDj

)

−Di

(

ĝij
)

Dj − ĝijΓ̂k
ijDk

= Di

(

ĝijDj

)

+
(

Γ̂i
ikĝ

kj + Γ̂j
ikĝ

ki
)

Dj − ĝijΓ̂k
ijDk

= Di

(

ĝijDj

)

+ Γ̂i
ik ĝ

kjDj .

Therefore, the second identity of the evolution equation (4.8) of Ĥ can be
rewritten as

∂t̂Ĥ = Di

(

1

s2κ(r)

(

σij − 1

|ξ|2
DirDjr

)

DjĤ
β

)

+ bjDjĤ
β + c(5.24)
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with coefficients given by

bj = Γ̂i
ikĝ

kj := bj
(

u, r,Dr,D2r
)

,

c =
(

∣

∣Â
∣

∣

2 − na2
)

Ĥβ − nβĤ + a2nβ+1
〈

X̂, ν̂
〉

:= c
(

u, r,Dr,D2r
)

,
(5.25)

which are uniformly bounded coming from the bounds on curvature and the
preserving h-convexity of evolving hypersurface. Moreover, Lemma 5.4 gives

∫

M̂
t̂
∩exp

q0
Sn
ζ
(q0)×[max{t̂0−ζ,0},min{t̂0−ζ,T}]

∣

∣∇̂Ĥβ
∣

∣

2
dµ̂t̂dt̂ ≤ Ĉ(ζ).

Therefore applying Theorem 1.2 in [11] to (5.24) with ζ′ = ζ/2 gives that
∥

∥Ĥ
∥

∥

Cα

(

M̂
t̂
∩exp

q0
Sn
ζ′
(q0)×[max{t̂0−ζ′,0},min{t̂0−ζ′,T}]

) ≤ C

for suitable α ∈ (0, 1) and some positive constants C = C(n, a, β, M̂0̂). �

Theorem 5.6. Under the conditions of Theorem 1.8, the normalized hyper-

surfaces M̂t̂ converge smoothly as t̂→ +∞ to a unit geodesic sphere of Hn+1
κ .

Proof. Take a sequence of time {t̂i} ⊂ [0,+∞) with t̂i → +∞. The uniform
bounds on the curvatures imply that there exists a subsequence of {t̂i}, again
denoted by {t̂i}, such that, depending only on distance from the origin,

M̂t̂i
→ M̂+∞ in the C1,α-topology for any α < 1,

and M̂+∞ is a convex C1,1-hypersurface. Since ρ̂+ ≤ C1, at each time t̂i, there
exists a point pi ∈M satisfying

(5.26) Ĥ(pi, t̂i) ≥ ncoκ(C1).

Proposition5.5 implies that Ĥ cannot decrease too fast in the sense that there
exists a δ > 0, independently of (pi, t̂i), satisfying

Ĥ
∣

∣

∣

M̂
t̂i
∩exp

qi
Sn
δ
(qi)×[max{t̂i−δ,0},min{t̂i−δ,T}]

≥ ncoκ(C1)

2
,

where qi = X̂(pi). Furthermore, choosing δ small enough implies that, pro-

ceeding as in Proposition 5.5, M̂t̂i
∩ expqi S

n
δ (qi) can be written as the graph

of a function ri for any t̂ ∈
[

max{t̂i − δ, 0},min{t̂i − δ, T }
]

. Using parabolic
Schauder theory on any space-time neighborhood

M̂t̂i
∩ expqi S

n
δ (qi)×

[

max{t̂i − δ, 0},min{t̂i − δ, T }
]

gives uniform C∞-estimates on the functions ri in a neighborhoods even smaller
with a suitable radius, denoted by δ′. Therefore,

M̂t̂i
∩ expqi S

n
δ′(qi) → M̂+∞ ∩ expq+∞

S
n
δ′(q+∞) in C∞,

where X̂(pi, t̂i) → q+∞ ∈ M̂+∞.

On the other hand, Theorem 3.1 implies that M̂+∞∩expq+∞
S
n
δ′(q+∞) must

be totally umbilic, and therefore is a part of a geodesic sphere. From (5.26)
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it follows that M̂+∞ ∩ expq+∞
S
n
δ′(q+∞) has mean curvature at least ncoκ(C1).

Then, using again the uniform Hölder continuity shows that (5.25) holds for

i larger enough in expqi S
n
δ (qi)/ expqi S

n
δ′(qi). Thus, the region where M̂+∞ is

known to be spherical can be extended. After finitely many iterations it can
be shown that M̂+∞ is a unit geodesic sphere, centered at the origin.

Since the above argument can be applied to any time sequence {t̂i}, it can
be concluded that the whole family M̂t̂ converges to a unit geodesic sphere as
t̂→ +∞ in C∞, depending only on distance from the origin. �

6. Exponential convergence

The last step towards the proof of Theorem 1.8 is to show that under the
normalized flow (4.2) the M̂t̂ converges to M̂+∞ exponentially. A natural
quantity to control the pinching of the principal curvature along the normalized

flow (4.2) is the quotient ˆ̃K/ ˆ̃Hn denoted by ˆ̃Q. From (4.13), (4.18) and (4.19)

the evolution equation for ˆ̃Q along the normalized flow can be derived in the
same way as the un-normalized equation.

Lemma 6.1. On any solution M̂t̂ of (4.2) the quantity ˆ̃Q satisfies the following

evolution equation:

∂t̂
ˆ̃Q = βĤβ−1

{

∆̂ ˆ̃Q+
(n+1)

n ˆ̃H

〈

∇̂ ˆ̃Q, ∇̂ ˆ̃Hn
〉

− (n−1)

n ˆ̃K

〈

∇̂ ˆ̃Q, ∇̂ ˆ̃K
〉

−
ˆ̃Hn

n ˆ̃K

∣

∣

∣
∇̂ ˆ̃Q

∣

∣

∣

2

+
(β−1)

Ĥ

ˆ̃Q∇̂i
ˆ̃H∇̂j ˆ̃H

(

ˆ̃
b
i

j−
n

ˆ̃H
δij

)

+
ˆ̃Q

ˆ̃H2

∣

∣

∣

∣

ˆ̃H∇̂i
ˆ̃
h
n

m−ˆ̃
h
n

m∇̂i
ˆ̃H

∣

∣

∣

∣

2

ĝ,
ˆ̃
b

+ ˆ̃Q
(β−1)Ĥ

β ˆ̃H

(

n
∣

∣

ˆ̃A
∣

∣

2− ˆ̃H2
)

+ aψ−1 ˆ̃Q

(

∣

∣

ˆ̃A
∣

∣

2
n
∑

i=1

ˆ̃b
i

i − n ˆ̃H

)

+ na2
(

1− ψ−2
) ˆ̃Q

(

aψ−1
n
∑

i=1

ˆ̃
b
i

i + n

)}

+ a2nβ
〈

X̂, ν̂
〉

ˆ̃Q

n
∑

i=1

(

ˆ̃
bii −

n2

ˆ̃H

)

+ a2n2
(

1− ψ−2
)

Ĥβ
ˆ̃Q

ˆ̃H
.

Thus the above lemma gives the evolution equation of f̂ = 1/nn − ˆ̃Q as
follows.

Proposition 6.2. On any solution M̂t̂ of (4.2) the quantity f̂ satisfies the

following evolution equation:

∂t̂f̂ = βĤβ−1

{

∆̂f̂ +
(n+ 1)

n ˆ̃H

〈

∇̂f̂ , ∇̂ ˆ̃Hn
〉

− (n− 1)

n ˆ̃K

〈

∇̂f̂ , ∇̂ ˆ̃K
〉

+
ˆ̃Hn

n ˆ̃K

∣

∣

∣
∇̂f̂
∣

∣

∣

2
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− ˆ̃Q

[

(β − 1)

Ĥ
∇̂i

ˆ̃H∇̂j ˆ̃H

(

ˆ̃
b
i

j −
n

ˆ̃H
δij

)

+
1

ˆ̃H2

∣

∣

∣

∣

ˆ̃H∇̂i
ˆ̃
h
n

m − ˆ̃
h
n

m∇̂i
ˆ̃H

∣

∣

∣

∣

2

ĝ,
ˆ̃
b

]

− ˆ̃Q
(β − 1)Ĥ

β ˆ̃H

(

n
∣

∣

ˆ̃A
∣

∣

2− ˆ̃H2
)

− aψ−1 ˆ̃Q

(

∣

∣

ˆ̃A
∣

∣

2
n
∑

i=1

ˆ̃b
i

i − n ˆ̃H

)

+ na2
(

1− ψ−2
) ˆ̃Q

(

aψ−1
n
∑

i=1

ˆ̃
b
i

i + n

)}

− a2nβ
〈

X̂, ν̂
〉

ˆ̃K

n
∑

i=1

(

ˆ̃
bii −

n2

ˆ̃H

)

− a2n2
(

1− ψ−2
)

Ĥβ
ˆ̃Q

ˆ̃H
.

From the preceding proposition the same arguments as in Theorem 3.5 of
[22] shows that the normalized flow (4.2) converges exponentially in C∞ to a
unit geodesic sphere of Hn+1

κ .

Theorem 6.3. There are t̂0, positive constants δi and Ci for every i ≥ 0 such

that for all t̂ ∈ [t̂0,+∞) the following estimates hold
∣

∣

∣

∣

ln

(

ĝ+∞(u, u)

ĝt̂(u, u)

)∣

∣

∣

∣

≤ C0e
−δt̂ for every non-zero tangent vector u,

∣

∣

∣
∇̂i
(

Ât̂ − Â+∞
)∣

∣

∣
≤ Cie

−δt̂,
∣

∣

∣
Ĥt̂ − n

∣

∣

∣
≤ C0e

−δt̂.

Hence, under the normalized flow (4.2) the M̂t̂ converges exponentially in to

in C∞ to a unit geodesic sphere of Hn+1
κ .

Proof. For a time t̂0 big enough, the following estimate can be obtain:

1− ψ−2 > 0 for all t̂ ∈ [t̂0,+∞).

Applying the similar argument as in Theorem 2.9 for Proposition 6.2 with
Lemma 2.3 gives

∂t̂f̂ ≤βĤβ−1

{

∆̂f̂ +
(n+ 1)

n ˆ̃H

〈

∇̂f̂ , ∇̂ ˆ̃Hn
〉

− (n− 1)

n ˆ̃K

〈

∇̂f̂ , ∇̂ ˆ̃K
〉

+
ˆ̃Hn

n ˆ̃K

∣

∣

∣
∇̂f̂
∣

∣

∣

2

− δ ˆ̃H2f̂

}
(6.1)

for some constant δ > 0 small enough. Note that Ĥ can be bounded from below
by the positive constant ncoκ(C1) and the positive factor ψ(t̂) is increasing in

time, thus there exists a time t̂1 even bigger such that ˆ̃H > n(coκ(C1) − a)
for all t̂ ∈ [t̂1,+∞). Then applying the maximum principle to (6.1) implies
that for a time t̂ even bigger there exist a positive constant δ′ and a positive
constant C satisfying

f̂(t̂) ≤ Ce−δ′ t̂.
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Once this is established one can derive as in Theorem 3.5 of [22] the desired
estimates of Theorem 6.3. �
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